[cicicano

RTE-6/VM
Technical Specifications

High-Level Languages © RTE-6/VM
Macro Assembler S o
User Microprogramming

¥ Extended & Virtu

Code & Memory
Space | for Data

Itiprogramming

‘Real-Time :f Multi-User

RTE-6/VM
Technical Specifications

KA Eaciaro

HEWLETT-PACKARD COMPANY

Data Systems Division MANUAL PART NO. 92084-90015
11000 Wolfe Road Printed in U.S.A. April 1983
Cupertino, California 95014 E0483

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.

New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Editiono ool Apr 1983

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1983 by HEWLETT-PACKARD COMPANY

Table of Con

TE-6/VM DISPATCHER
1 INTRODUCTION + & & & ¢ o o « &
2 PARTITION USAGE+ &
3 DISPATCHER CONTROL FLOW . . .
1.3.1 Dispatch Task Director Ro
y FINAL DISPATCH . & & « « & & &
5 SWAPPING . &+ « ¢ ¢ o o o o o &
1.5.1 Partition Priority Aging
.6 PROGRAM TERMINATION/ABORTION .
7 OVERVIEW OF TIME-SLICING OPERAT
8 MAPPING USER PROGRAMS ($SMAP)
9 PROGRAM SEGMENT LOAD
1 MLS DISC-RESIDENT NODE LOADS
1 SHARABLE EMA RESTRICTIONS . .
1 $FPTN FLOW CHART o« o e 4 s e

nN = O

I/0 REQUESTS

2.1 I/0 REQUEST TYPES
2.2 I/0 OVERVIEW . . « & &« & « & &
2.3 I/0O FLOW o ¢ 4 ¢ o o o o o o &
Process the Interrupt .
Validate the EXEC Call .
Validate and Process the
Buffered I/0
Set Up for Driver . . .
EQT Words Set Up by RTE-6
Driver Rules for Initiati
Clearing After the Device
Processing Interrupts .
Set Up for Drivers . .
Completion Return . . .
System Calls« .

. e o o « o
o o e »

PP PPN N

_-m e VOOV FEFWND -

WwWwwwwwwuwwwww
. e o o
N - O

o o

EXEC AND $ALC
INTRODUCTION . . « & & o« « « &
EXEC CALL PROCESSOR
ORGANIZATION OF EXEC
LIBRARY EXECUTION CONTROL . .
RESIDENT LIBRARY SUBROUTINES .
UTILITY AND SINGLE-USER LIBRARY
PRIVILEGED AND REENTRANT PROCES
REENTRANT LIST STRUCTURE . . .

FORMAT OF REENTRANT SUBROUTINE

TRACK ASSIGNMENT TABLE (TAT) .
ERROR MESSAGE PROCESSOR . . .
3.12.1 Memory Protect

.
S, A LYooV EFEFWN =M

N = O

tents

utine $XCQ

ION L] L] . .

e e e s s e
e e e e s e
e s e s e
Parameters

e e e e s e

e o o o o o

/VM L] L] . .
on Return .

e o e o o

o o o o o o
e o o o o

e o o o o
e o o o o o

PROGRAMS .
SING . . .

LIST . . .

DISC TRACK ALLOCATION PROCESSORS AND REQUESTS

iii

3.12.2 Dynamic Mapping Violation
3.12.3 EX Errors . o o« o o o o o o o o o
3.12.4 Unexpected DM and MP Errors . . .
3.13 SYSTEM AVAILABLE MEMORY (SAM)
314 MAPOS & v v v 6 6 6 4 ¢ 4 6 6 o o o o o

CHEDULER
. INTRODUCTION . . o« o e s
. ORGANIZATION OF THE SCHEDULER e o e e
LIST PROCESSOR . & ¢ ¢ ¢ ¢ ¢ ¢ o o o o &

iv

LIST PROCESSOR CALLING SEQUENCE
DORMANT REQUEST . . « ¢ ¢ ¢ ¢ ¢ ¢« ¢ o &
SCHEDULE REQUEST . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« &
LIST CALLS BY DRIVERS« « « . &

OPERATOR SUSPEND REQUEST . e o o e e
NON-OPERATOR SUSPEND REQUEST

LINK PROCESSOR . &« ¢ ¢ ¢ ¢ ¢ o o o o &
MESSAGE PROCESSOR . . « v ¢ ¢« & o o« o« &

SYSTEM PARSE ROUTINE
SYSTEM STARTUP . . . ¢ ¢ ¢ ¢ o o« o o &
EXEC REQUEST HANDLERS . . . « . . « «
PROGRAM SUSPEND REQUEST
SEGMENT LOAD REQUEST « « .« .

SYSTEM TIME REQUEST . « ¢« « « ¢ o & « &
TIME SCHEDULE REQUEST « . « .« &
PROGRAM TERMINATION « ¢« ¢ ¢ o« &
PROGRAM SCHEDULING . . . « ¢ ¢ ¢ o « &
STRING PASSING . . ¢ ¢ ¢« ¢ ¢ o o o o &
SCHEDULER INTERFACE WITH DISPATCHER . .
SHARABLE EMA ¢« ¢ ¢ ¢ ¢ ¢ o &

TE-6/VM PARITY ERROR MODULE

PARITY MODULE OVERVIEW . . . « . « « . .
EXTERNAL COMMUNICATION+ +
SYSTEM TABLES REFERENCED
SYSTEM BASE PAGE COMMUNICATION
EXTERNAL SUBROUTINES CALLED
OTHER EXTERNAL REFERENCES . . .

DETAILED TECHNICAL ASPECTS OF OPERATIONS
PARITY ERROR DETECTION « . . .
PARITY ERROR VERIFICATION
PARITY ERROR RECOVERY PHILOSOPHY
WHO DUNNIT?. ¢ ¢ ¢ v ¢ ¢ o o ¢ o o o o &
THE SUDDEN BLOW . . & « ¢« ¢ ¢ v ¢ o o &
IT'S AN INSIDE JOB . . . v ¢« v & ¢ o & &

SOFT PARITY ERROR + « . .
SYSTEM PARITY ERROR . . o e e e e e e
USER PROGRAM PARITY ERROR o e e e e e e
DCPC PARITY ERRORS « . ¢« ¢ . .

3-23
3-24
3-24
3-25
3-29

L
EWOWOPONNAIWN ==

J‘—‘J‘-‘J‘-‘J:’J;—'J‘—‘:J’—"l:’.l‘—'

.
N OOUTUNTUTUVNTELFWWLWWNLDNDND = = -

6

SYSTEM LIBRARY ROUTINES

6'1

6.2

6.3

6.4

I/0 REQUESTS AND RELATE
6.1.1 $3SUBC Function .
%SSW Function .

FWRIS Subroutine
FWRIT Subroutine
.STIO Subroutine

BINRY Subroutine
CHEL Subroutine

0 EQLU Function
1 EQTRQ Subroutine
2 FNDLU Subroutine

e o o o

IFDVR Subroutine
IFTTY Function .
ISSR Subroutine.
ISSW Function .

3

4

5

6

7

8 LDTYP Function .
9 LOGLU Function .
0 LUTRU Subroutine
1

2

3

4

5

6

7

G

.
—_

* o
—_
.

MAGTP Functions

PTAPE Subroutine
REIO Subroutine

SREAD Subroutine
SYCON Subroutine
TRMLU Subroutine
XREIO Subroutine

RAM STATUS ROUTINES

e o o o
[P i e R
.

[o W e We,We We Wo We We We Ne Mo, No,Ne Ne We Ne We,Ne We W) Ne Wo, We We, Ne Ne)l
. L]
—
.

1 BNGDB Function .
2 COR.A Subroutine
3 COR.B Subroutine
y GETST Subroutine
5 GTIDF# Subroutine
.6 IDGET Function .
7 IFBRK Function .
8 LIMEM Subroutine
9 PNAME Subroutine
10 PRTN Subroutine
11 RMPAR Subroutine
NVERSION ROUTINES .

$CVT3 Function .

1
2

.3 CNUMO Subroutine
4 KCVT Function

5

1 $BALC Subroutine
2 $ESTB Subroutine
.3 $SMVE Subroutine
y

JFDVR Subroutine

D

.TAPE Subroutine .

DSCPR Subroutine .

CNUMD Subroutine .

TMVAL Subroutine .

.OWNR Subroutine .

ROUTINES

6.4.5 .SETB, .CLRB Subroutines
6.4.6 ACINF Function
6.4.7 ATACH Subroutine . . .
6.4.8 CAPCK Subroutine . . .
6.4.9 DTACH Subroutine . . .
6.4.10 GTERR Subroutine . . .
6.4.11 LUSES Function
6.4.12 PTERR Subroutine . . .
6.5 SYSTEM CALLS AND ENTRY POINTS
6.5.1 $CPU# Entry Point . .
6.5.2 $SUB2 Subroutine . . .
6.5.3 .LWAS Entry Point . .
6.5.4 .OPSY Function
6.5.5 .STDB Entry Point . .
6.5.6 CPUSH Subroutine . . .
6.5.7 DBKPT Subroutine . . .
6.5.8 OLY.C Subroutine . . .
6.5.9 OPSYS Function
6.5.10 SAVST Subroutine . . .
6.5.11 SEGLD Subroutine
6.5.12 SETAT, GETAT Subroutlne
6.5.13 SETTM Subroutine . . .
6.5.14 SYSRQ Subroutine . . .
6.5.14.1 RNRQ
6.5.14.2 LURQ
6.5.14.3 CLRQ .« « « « &
6.5.15 TATMP Subroutine . . .
6.6 MISCELLANEOUS ROUTINES . . .
6.6.1 $PARS Subroutine . . .
6.6.2 .FNW Subroutine . . .
6.6.3 .LLS Subroutine . . .
6.6.4 .MAC. Subroutine . . .
6.6.5 .PACK Subroutine . . .
6.6.6 ABREG Subroutine . . .
6.6.7 FTIME Subroutine . . .
6.6.8 GMS.C Subroutine . . .
6.6.9 IGET Function
6.6.10 INAMR Function
6.6.11 INPRS Subroutine . . .
6.6.12 IXGET Function
6.6.13 IXPUT Subroutine . . .
6.6.14 KHAR Function
6.6.15 NAMR Function
6.6.16 OVF Function e e e e
6.6.17 PARSE Subroutine . . .
6.6.18 RPLIB Subroutine . . .
6.6.19 RSFLG Subroutine . . .
6.6.20 RUN.C Subroutine . . .

7 VIRTUAL MEMORY
7.1 VIRTUAL MEMORY ADDRESS

vi

6-29
6-30
6-31
6-32
6-33
6-33
6-34
6-34
6-34
6-35
6-35
6-35
6-35
6-36
6-36
6-37
6-38
6-38
6-38
6-39
6-39
6-140
6-40
6-40
6-41
6-13
641
6414
6-1414
6-45
6-146
6-46
6-47
6-47
6-47
6-48
6-48
6-149
6-50
6-51
6-51
6-52
6-53
6-5U
6-54
6-54
6-55
6-56

7.2 SUIT & & 4 4 o o ¢ o o o o o o o o o o o
7.3 VM PAGE TABLE (PTE) . & & ¢ ¢ ¢ o« o o &
7.4 VM ADDRESS TRANSLATION . . ¢ ¢ ¢ ¢ o« o &
7.5 PTE USAGE e e e e
7.5.1 Initial Access to VM Data e e e s
7.5.2 Microcode Functions« . «
7.6 PAGE FAULT & & 4 4« ¢ o o o o o o o o o &
7.6.1 VMA Functions . . ¢« « ¢« ¢ & o &
T7.6.2 Page Replacement in Working Set .
7.6.3 Random Replacement Algorithm . . .
7.6.4 Monotonic Access Algorithm
T.7 SYNONYM COLLISIONS . . . e e e e e e
T.7.1 VM Synonym Table (STE) e e e
7.7.2 Synonym Collision Handling (VMA)
7.8 PROGRAM SWAPPING . ¢ & & ¢ o o o o o o &
7.9 USER PROGRAM PREAMBLE . . ¢« ¢« ¢« ¢« « « &
7.10 INFORMATION SUPPLIED BY ID SEGMENT . . .
7.11 OTHER VM TABLES . & ¢ &« ¢« ¢ o ¢ o o o &
7.12 VIRTUAL MEMORY MICROCODE ROUTINES . . .
7.13 VIRTUAL MEMORY MACROCODE ROUTINES . . .
7T.14 VM BACKING STORE FILE HANDLING o« e s e
T.14.1 Creating, Manipulating VM Files .
ON-LINE GENERATOR
8.1 OPERATION & & v 4 4o ¢ o o o o o o o o &
8.2 GENERATION SEQUENCE . ¢« & &« ¢ & o o & &
8.3 FILE INTERFACE . . . &+ v ¢ ¢ o ¢ o o o &
8.4 INTERFACE ROUTINES . & ¢+ &« & ¢ ¢ o ¢ o &
8.5 SCRATCH FILE . v ¢ v ¢ ¢« ¢ ¢ o o ¢ o o &
8.6 RELOCATABLE INPUT .+ & v ¢ ¢ o ¢ o o o &
8.7 ANSWER FILE . & ¢ ¢ ¢ o o o o o o o o »
8.8 LIST FILE + & 4 ¢ ¢ o o o o o o s o o
8.9 ECHO PROMPT . & & 4 ¢ « ¢ o « o o o o &«
8.10 BOOTSTRAP FILE ¢« v v ¢ ¢ ¢ o ¢ ¢ o o o &
8.11 SIZE RESTRICTIONS . & 4 ¢ o o ¢ o o o o
8.12 PAGE ALIGNMENTS . & v ¢ ¢« ¢ ¢ o o o o &
8.13 BASE PAGE . & ¢ v ¢ ¢ ¢ ¢ o ¢ o o o o
8.14 SYSTEM COMMUNICATION AREA (SCOM)
8.15 COMMON . & v ¢ v 4 ¢ o e o o o o o o o @
8.16 CONFIGURATOR PROGRAM ., « « v ¢ ¢ &« o o
8.17 CODE PARTITIONS . . ¢ v ¢ ¢« o o o o o &

8.18 BOOTSTRAP AND EXTENSION . v v & ¢ o o &
8.19 TABLE AREAS I ANDII e e o o
8.20 EQT, DRT, AND INT TABLE SIZES c e e o e
8.21 DRIVERS AND DVWMAP . . & v ¢ ¢ o o o o &
8.22 SYSTEM DRIVER AREA (SDA) . «. ¢ v o o« « &
8.23 DRIVER PARTITIONS . & ¢ ¢ ¢ ¢ o o o o &
8.24 ID SEGMENTS AND EXTENSIONS « . .
8.25 EXTENDED MEMORY AREAS (EMA).
8.26 PARTITION DEFINITION PHASE . . . « « o

8.26.1 System Available Memory (SAM) . .

vii

10

6.2 Memory Allocation Definition . .
6.3 Partition Definition Sequence . .
6.4 Free Lists . . ¢« ¢ ¢ o ¢ ¢ o o &
6.5 Modify Program Page Requirements
.26.6 Assign Program Partitions

8.27 MEMORY PROTECT FENCE TABLE (MPFT) . . .
8.28 MEMORY RESIDENT PROGRAM MAP
8.29 SETTING SYSTEM ENTRY POINTS
8.30 ERROR PROCESSING +. & ¢ ¢ o o o o o o o &
8.30.1 Generation Errors « « « « ¢« ¢ o o
8.30.2 File Errors . ¢« ¢« ¢ o« o o« ¢ o o« &

3 Abortive Termination
.30.3.1 NABOR & &+ v ¢ ¢ o ¢ ¢ o o &
0.3.2 \NTERM . ¢ ¢ ¢ ¢« ¢ ¢ ¢ o o @
Mi scellaneous Error Processors .
4 1 \INER and \IRER
NROOM and CMER:

0. 5 Error Suspensions ¢ . . o
0.6 Answer File Errors . « ¢« « « « &
0.7 Driver Partition Overflow
8.30.8 Error Codes v ¢« v ¢ ¢ o ¢ o o o &

ONFIGURATOR

OVERVIEW OF SYSTEM BOOT-UP OPERATION . .
DISC BOOT EXTENSION . . . « « « ¢« « « &
USING THE BOOTSTRAP LOADER
CONFIGURATOR PROGRAM STRUCTURE
INITIALIZATION PROCEDURE FOR $CNFG . . .
CONSOLE RECONFIGURATION
LOADING MEMORY RESIDENT PROGRAMS, DRIVER
I/0 RECONFIGURATION . . . « & & ¢ &« & &
I/0 RECONFIGURATION TABLES
I/0 RECONFIGURATION PROCEDURES
MEMORY RECONFIGURATION ¢« « « &
DEFINING SAM EXTENSION
DEFINING USER PARTITIONS
TRANSFERRING DATA FROM MEMORY TO DISC .

- A 0T O EWN -

FEWMN-=20

W OOWOWOWOOVOOVOVOOOVO O

SWTCH
10.1 INTRODUCTION & & & ¢ ¢ o o ¢ o o o o «
10.2 OVERVIEW OF SWTCH ORGANIZATION
10.3 LAYOUT OF SWTCH CODE . + & & & « & « &
10.4 TURN-ON PARAMETERS . . . ¢« v ¢ ¢ &« « &
10.5 NAMING CONVENTIONS . . ¢ ¢ o ¢ o o o &
10.6 MAJOR PROCESSING BLOCKS + v « « ¢ « « &
10.6.1 Output File Test . . ¢« « ¢ o« « &
10.6.2 Segment Load o o
10.6.3 New System I/0 Conflguratlon . .
6.4 Target Disc Information
10.6.5 Target Cartridge Insertion . . .
10.6.6 Saving Target File Structure . .

.

viii

8-39
8-10
8-42
8-43
8-43
8-u1
8414
8-16
8-18
8-49
8-49
8-50
8-50
8-50
8-50
8-50
8-50
8-51
8-51
8-51
8-52

| |
nHNND =

O O O OO OO OO
1 |
N OOV =

|
_

\O\fD\O\O

10-1
10-1
10-2
10-4
10-7
10-8
10-8
10-8
10-8
10-9
10-10
10-10

11

10.6.7

10.6.7.1 7900 Initialization .
10.6.7.2 ICD/MAC Initialization
10.6.8 Auto Boot Option
10.6.9 Overlay Conditions
10.6.10 File Purge . . « ¢« « « .+ .
10.6.11 System Installation
10.6.12 Subchannel Initialization .
10.6.13 Auto Boot-Up . ¢« & & & « &
10.6.14 Termination e e e e e e e
10.7 MAJOR SUBROUTINES . . . + « « « &
10.7.1 VEYSY & ¢ v ¢ ¢« ¢ o ¢ o o »
10.7.2 VIOSO v ¢ v ¢ o o o o o o
10.7.3 PARMP & SCAN . . ¢« ¢« ¢« « &
10.7.4 PYN © & v v v e e v v o o
10.7.5 PURGT « ¢« &« ¢ ¢ o« ¢ o o o« &
10.7.6 UPDAT . . . e o o
10.8 SWSG1 ROUTINES FOR 7900 DISCS . .
10.8.1 Subroutine \STDO
10.8.2 DISKD v ¢« « o ¢ ¢ « o o o &

Subchannel Initialization Prompts

10.9 SWSG2 ROUTINES . . . « &« « o &

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19

MAJOR
SWSG3
SWSG3
E.FTL
E.INT
E.RTY
E.RLR
E.PMR
E.ERT

BRANCH TABLE PROCESSING BLOCKS

SWSG2 SUBROUTINES
OVERVIEW o« o e
INTERNAL SUBROUTINES o .
- FATAL ERROR PROCESSOR .

INTERNAL ERROR PROCESSOR
RETRY ERROR PROCESSOR .
RELEASE AND RETRY . . .

.

2

PROMPT AND RETRY TRANSACTION ERROR PROCESSOR

ERROR RATE TEST AND BLOCK SPARING .

SESSION MONITOR ACCOUNT PROGRAM
11.1 INTRODUCTION « & + . .

11.2 ACCOUNT FILE STRUCTURE . . .
Configuration Table . .
Disc Allocation Pool . .
User/Group ID Map . . .

Account file Directory .
User Account Entries . .
Group Account Entries . .

MEMORY COMMUNICATION

COMMAND PROCESSING . & &« &« « &
ALTER,ACCT . . . ¢« ¢« ¢« ¢« « .« &

11.6.1

11.3
11.4 INITIALIZATION . . « & & o o &
11.5
11.6

Sequence of Operations .

7 LIST,ACCT . & & ¢ v ¢ ¢ ¢ o o &
.8 LIST, GROUP « . « . &

9 LIST, USER . . . ¢ ¢ ¢ ¢ & o .

1

1

e e o o o o o s o o o o

1 NEW, GROUP « « « & o« &

10-10
10-10
10-10
10-11
10-12
10-12
10-12
10-12
10-13
10-13
10-13
10-13
10-14
10-15
10-15
10-15
10-16
10-17
10-17
10-17
10-19
10-20
10-21
10-23
10-24
10-27
10-27
10-27
10-27
10-28
10-28

11-1
11-1
11-3
11-4
11-5
11-5
11-5
11-6
11-6
11-7
11-9
11-9
11-10
11-12
11-13
11-13
11-14
11-14

ix

11.12 NEW, USER .

11.13 PURGE, ACCT .
11.14 PURGE, GROUP

11.15 PURGE, USER

11.16 RESET
11.17 TELL
11.18 UNLOAD

11.19 PASSWORD .
11.20 INTERNAL SUBROUTINES e 6 s e o o e e o s e e e o
ACCRE - Create Accounts File . . . « « « . .

11.20.1
11 20.2

.
Nl\)l\)l\)l\)l\)f\)l\)l\)

.

3
i
.5
6
7
.8
.9
.1
.1

_ e e
_l.__l_n—l—\.—-l_h

0
1
11.20.12
11.20.13
11.20.14
11.20.15
11.20.16
11.20.17
11.20.18

11.20.19
1.20.20

11.20.33
11.20.34
11.20.35
11.20.36
11.20.37
11.20.38
11.20.39
11.20.40
11.20.41
11.20.42

ACOPN

‘ACWRH

ACINT
ACPAS
ACPSN
ACSDN
ACAST
ACSTR
ACACP
ACNVS
ACTIM
ACSID
ACNFG
ACFDF
ACGSP
ACGTG
ACGTU
ACGID
ACGBT
ACSBT
ACASB
IVBUF
ACINM
ACLNK
ACLTM
ACOPL
ACLCK
ACROP
IFBNR
ACNXA
ACFID
ACPGA
ACTRM
ACDDV

.

e o o o o e o o o o 6 o o o o o o

Open Accounts File . . . « « « « .« .
Write Syntax Messages For Help . . .
Retrieve $DSCS and $DSCS+1
Verify MANAGER.SYS Password
Input and Parse Password
Shut Down an Active Session . .

Retrieve Entry in Active Session Block . . .

Print Stars
File Cleanup and Complete Shut Down
Converse with Terminal
Print Connect and CPU Times
Set ID Bit Map . . .

e o o o

Retrieve Entry From Conflguratlon Table .

Find Free Account Entry
Schedule GASP for Spool Information
Get Group Account ¢ ¢ ¢ .
Get User Account . . . « + ¢« ¢« ¢ o &
Get Free ID Number . . . « ¢« ¢ &« « &
Get Bit Out of IDMap . . ¢« ¢« « « &
Set Bit in IDMap . + v ¢ &« ¢ o o
Search for Active Session
Treat File as Large Array

Initialize and Release Session Memory
Link to Subroutines in Other Segments

Print Last Log of Time . . + « + . &
Open List File . . . + ¢ ¢ ¢ & & « &
Lock List LU &« v ¢« ¢ ¢« ¢ ¢« ¢ o o o &
Open or Create File . . . « « ¢« « .
Determine if Device has Binary Mode
Get Next Account Directory Entry and
Fix Message, User and Group Pointers
Clear Directory Entry . . . « . . .
Terminate ACCTS . . ¢ ¢ ¢« ¢ o « o &
Double Word DIVIDE . . . « « « &« « &

ACDIR - Read and Write Directory Entries . .
PACFDA - Find Account Entry . . . « « « . .

ACFMT
ACCLL
ACCLS
ACPRM
ACREI

Format and Output Data
Close List File or Unlock LU
Close and Truncate File
Prompt Interactive Device
Input Commands From Device, File, or

11-15
11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-19
11-19
11-20
11-21
11-21
11-22
11-22
11-23
11-24
11-25
11-25
11-26
11-26
11-27
11-28
11-28
11-29
11-30
11-30
11-31
11-32
11-33
11-33
11-34
11-35
11-36
11-36
11-37
11-38
11-39
11-10
11-10
11-11
11-42
11-42
11-43
11-44
11-15
11-16
11-47
11-L8
11-48
11-49

12

13

11.20.43 ACHLP - Process HELP Commands . « « « o o o o o o &
11.20.44 ACERR - Post and Print Errors . . ¢« ¢ ¢ o« o« o o o« &
11.20.45 ACWRL -~ Write to List File or Device « + .«
11.20.46 ACREL -~ Read From List Device or File
11.20.47 ACITA - Convert Integer to ASCII . . . « o o .
11.20.48

11.20.49
11.20.50

MBYTE,LBYTE - Retrieve Upper or Lower Byte of Word .

ACXFR
ACTIN

Transfer Control to Device or Command File .
Test List Files Against Transfer Stack File,

11.20.51 ACWRI - Write to Input Device . .
11.20.52 ACSES -~ Shut Down Session

SESSION TERMINAL HANDLERS

12.1
12.2

12.2.1
12.2.2
12.2.3
12.2.4

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24
12.25
12.26
12.27

OVERVIEW . & & & ¢ o o o o o o o o o o &
OPERATING ENVIRONMENT . . . & ¢ ¢ ¢ & o &
Prompt Processing . . « . « « « « &
RPN Processing . o o ¢ o« o o o &«
LOGON Processing . « v ¢« o o o o &
Calling Sequence . . + & o« o « o &
LOGON FLOW ¢ & & ¢ o o o o o o o o o o &
SETUP FOR LOG=ON . + & ¢ v ¢ ¢ o o o o &
CHECK SESSION LIMIT . . & & ¢ o o « o o »
PARSE INPUT BUFFER . . . ¢« v ¢« ¢ o « & &
SCAN ACCOUNT FILE DIRECTORY FOR USER . .
USER IDENTIFIED . & ¢ & o o o o o o o &
PASSWORD REQUIRED + & &4 ¢ ¢ o ¢ ¢ o o o &
USER IDENTIFIED . & & ¢ o ¢ o o o o o o &
CHECK FOR CONFIGURATION TABLE ENTRY . . .
CONFIGURATION TABLE ENTRY FOUND
UPDATE SST LENGTH WORD . . « « ¢ ¢« &« « .
COMPLETE CONSTRUCTION OF SCB
BUILD SESSION PROGENITOR . & & & « o o &
MOVE AND LINK SCB . v ¢ « & « & o« o e s
POST LOG-ON INFORMATION TO ACCOUNT FILE

SESSION CREATED AND ACCOUNT FILE UPDATED
ISSUE LOG-ON COMPLETE MESSAGES
START UP FMGLU & & & & ¢ ¢ ¢ ¢ o o o o &
LOG-ON COMPLETE . . & & ¢ ¢ o o « o o o &
LGOFF PROCESSING . & ¢ & o o o o o o o &
LGOFF FLOW & & & ¢« o o o o o o o o o o &
LOGON/LGOFF MESSAGE PROCESSOR - MESSP . .
$SALC + $SRTN & v & ¢ o ¢ o o o o o o o &
MKSCB & & ¢« & ¢ ¢ o o o o o o o o o o o @
RLSCB & ¢ ¢ ¢ o ¢ o o o o o o o o o o o

MLS-LOC LOADER

13.1

13.1.1
13.1.2
13.1.3
13.1.4

13.2

DATA FORMATS . . . « ¢ ¢ ¢ ¢ ¢« o o« ¢« &

Memory Resident Nodes

COMMAND FILE . & ¢ ¢ v ¢ ¢ ¢ o o o o o &

Mixed Memory and Disc Resident Nodes
Rotating Base Page (MLS-LOC Disc Format)

.

LOC Data Structure (Disc Resident Nodes)

11-50
11-51
11-51
11-52
11-53
11-54
11-54
11-56
11-56
11-57

12-1

12-3

12-3

12-5

12-6

12-6

12-8

12-9

12-9
12-10
12-10
12-11
12-11
12-12
12-13
12-13
12-13
12-14
12-14
12-14
12-14
12-15
12-15
12-15
12-15
12-17
12-18
12-20
12-22
12-24
12-24

13-6
13-6
13-9
13-12
13-12
13-13

xi

13.2.1 Potential Search Command Problem . .
13.2.2 Resolving Undefined Externals
13.2.3 Packing the Symbol Table . .« o o
13.3 SH COMMAND PROCESSOR . . « « .« . o« o s e
13.4 PF COMMAND PROCESSOR e e e e
13.5 BUILDING .PTBL . . ¢« & & o & o+ & o« e e
13.6 DB COMMAND PROCESSOR . . . « . . o« e o e
13.7 LIBRARY SEARCH . . . « ¢« ¢« « « & . e e e
13.8 LOADING DISC RESIDENT NODES

13. BUILDING THE THUNK
13.10 LOADING MEMORY RESIDENT NODES .
13.11 MEMORY ALLOCATION
13,12 DISC FORMAT ¢« « ¢« o .
13.13 ROTATING BASE PAGE
13.14 SETBP . . v ¢ ¢ ¢ ¢ ¢ o o &

13.15 M.OTB,M.ABT,M.0BP - ABSOLUTE OUTPUT

DVP43 Power-Fail Auto-Restart Driver
Reentrant List Structure

.ZPRV/.ZRNT Calling Sequences

ID Segments

Di spatcher Interface to List Processor
F Memory Addressing Spaces

System Disc Layout

Entry Point Layout on Disc

Physical Memory Allocation
Timeslice Quantum Definition
Session Monitor Tables

Calling Sequences to D.RTR

Data Control Block, File Directory Formats

ROUTINES

Cartridge Directory and File Record Formats

xii

13-17
13-18
13-20
13-23
13-24
13-26
13-27
13-27
13-29
13-39
13-48
13-49
13-56
13-57
13-64
13-65

e e e e, e, e e - .- - - - - ——- - -

+—— 4
g
o
|—l

l
| RTE-6/VM DISPATCHER
I

+ ———

1.1 INTRODUCTION

The RTE-6/VM dispatcher is the central decision-making portion of the
operating system. Every operator command and EXEC request in the system
returns to the dispatcher entry point $XCQ. The dispatcher schedules the
programs to execute, determines the area of execution, and controls CPU
access. The dispatcher is made up of three modules: DISP6, DISPX, and
0S6DP, that perform the following functions:

1. Program execution ordering

2. Program load and swap

3. Segment load

4. Multilevel Segmentation (MLS) node load
5. Program abortion

6. Memory management

Timeslice management

8. Critical program mapping

1.2 PARTITION USAGE

The dispatcher manages memory in user defined, fixed partitions. The total
number of partitions in the system, specified by the generator, is contained
in the word $MNP. Each partition is represented in memory by an entry in
the Memory Allocation Table (MAT). Entry point $MATA points to the table,
which extends from the entry point upward toward high memory. The format of
each partition entry in the Memory Allocation Table is shown in Figure 1-1.

1-1

Dispatcher

+ ___
I
| 151413121110 9 8 7T 6 5 4 3 2 1 0 Word
[e e e e e it it et Aelt T T
| | MAT Link Word | 0 MLNK
| o |
| | Partition Occupant Priority | 1 MPRIO
| oo |
| | ID Segment Address of Occupant | 2 MID
| ===] = [=mmmmee | =mmmm oo |
| | M|//| DI////////| Physical Start Page of | 3 MADR
: : {//I {//{/////: Partition :
| | R] ¢| S| E|/////| Number pages in Partition | 4 MLTH
: : : : } }/////{ (exclude Base Page)l }
| ARTI///////77171/7771777/11//1/7////////| STATUS | 5 MRDFL
i I I///////////////////////////////////I i
| | Subpartition Link Word (SLW) | 6 MSUBL
R R e e TP +
I
+ ---
Figure 1-1. Memory Allocation Table Entry Formats.
Where:
MAT
Link
Word = -1 if partition not defined during system
generation or by parity error
= 0 if end of list
M = 1 if MAT entry is for a mother partition
D = 1 if program dormant after save resource
or serially reusable termination
R = 1 if partition is reserved
c = 1 if partition in use as part of chained
partition
S = partition is also a shared EMA partition
E = partition is active in a shared EMA mode
RT = 1 if MAT entry is for realtime partition

Dispatcher

STATUS program dispatch status:

- program being loaded

- program is in memory

segment being loaded or swapped out
- program is swapped out

- subpartition swap-out started

for mother partition

subpartition completed.

Mother partition cleared.

FWMNMPREO
1

(S}
1

Subpartition Link Word:

0 if MAT entry is not a subpartition or
a mother partition

= next subpartition address if this is a
subpartition

= mother partition MAT address if this is
the last partition entry.

There are three different types of partitions:

1. Real Time (RT), headed by $RTFR at system startup.
2. Background (BG), headed by $BGFR at system startup.
3. Mother (MOM), headed by $CFR at system startup.

These three lists are established by the generator in order of increasing
size. The only purpose for establishing RT partitions and BG partitions is
to keep the +two classes of programs, RT and BG, from contending for
memory.The two classes of partitions are actually identical. Mother
partitions are primarily for EMA, VMA and MLS programs.

Mother partitions are automatically defined during generation when you
respond with a "YES" answer to the "SUBPARTITIONS?" prompt issued when a
partition is larger than the maximum addressable space. Although Mother
partitions are in a separate list, subpartitions may be linked into either a
Mother partition or linked into a BG or RT (either free or allocated) list.

When the subpartitions are part of a Mother partition, the Mother partition
MAT entry word 6, the Subpartition Link Word (SLW), will point to the Link
Word (word 0) of the first subpartition. The SLW of this subpartition will
point to the Link Word of the next subpartition, and so on throughout the
subpartition chain. The SLW of the last subpartition will point to the Link
Word of the Mother, if this is a circular list. This sequence is shown in
Figure 1-2.

If no subpartitions are actually defined, but the response was "YES" to the

1-3

Dispatcher

"SUBPARTITIONS?" prompt, the Mother partition is defined and its SLW points
to the Link Word of the same MAT entry.

When a Mother partition is in use, the entire chain of subpartitions is
considered to be in use, and and each subpartition's C bit is set. The
chained partitions are thus treated as a single entity and may not be
individually swapped. In this case, the whole Mother partition is swapped
if needed. All partition status information (priority, ID segment address,
Read Completion flag) is kept in the Mother partition MAT entry.

The Dispatcher checks for empty partition lists at start-up. If there are
no Real Time partitions, the header of the RT partitions list points to the
background used in the BG list. If there are no Mother partitions, BG
partitions are used; if there are no BG partitions, the RT partitions are
used.

The sizes of the largest non-reserved partition of each type are kept in
three words:

$MRTP - RT partition.
$MBGP - BG partition.
$MCHN - Mother partition.

The sizes of the largest non-reserved, non-shared partitions (excluding EMA
partitions) are kept in three words:

$NRTP - RT partition.
$NBEP - BG partition.
$NCHN - Mother partition.

The non-shared EMA partition sizes are used by LOADR and MLLDR to make sure
that the shared EMA program can find a partition to run in.

1-Y

Dispatcher

| M=1 START PAGE (P)|
| -mmmmmm oo |
| c=1 # PAGES () |
e i el i +
| SUBPARTITION POINTER (SLW) |----+
4 === os=Sco=sS=SSoSsSSS====S====4 |
l 0 R

| =-mmmsssmoomeooeeoeoooo o |
| SUBPARTITION 1 |

| -mmmmmm oo |
| 0 |

| SUBPARTITION POINTER (SLW) [----+

+====S=zss=SsSsszssSss=anssoxEs==as4 |

| 0 | <=

| -=emmonmos oo |
| SUBPARTITION 2 |

| - mmmmem oo |
| 0 |

| SUBPARTITION POINTER (SLW) [----+

| 0 [<---+
[===mmmm e |
| SUBPARTITION N |

| - -mmmmee e |
| 0 |

Figure 1-2. RTE-6/VM Mother Partitions

1-5

Dispatcher

Each of the three types of partitions--BG, RT, and MOM--is kept in a list.
The type of the list is determined by the state of the partition:

1.

Free list. The partitions have no occupants. The list is ordered by
size, from smallest to largest partition. This guarantees that a search
of this list will find the smallest available partition first.

Dormant list. The partitions contain programs that cannot execute. The

dormant programs include those that have been terminated serially

reusable, or terminated saving resources, or user suspended. The list
is ordered first by low-to-high priority programs and then by
smallest-to-largest size. Thus a search of this 1list will yield the
lowest priority programs in the smallest partition first.

Allocated list. This is really an extension of the dormant 1list, and
contains those partitions whose programs are active and located in that
partition's memory.

Figure 1-3 shows the partition linking scheme for RT partitions. The end of
the list is indicated with a "0" entry box in the last partition.

1-6

Dispatcher

+ —— +
1O]
1 1
+ —— +
i 1
H 1 1
n 1 - !
—] 1
- + —— +
A
2 _
]
[1 1
< + —— +
[&) 1 1
O [} 1
=) 1 P |
M + ——— 5 1
1 1 |
“ + —— +
T + — +
“ Q 1 1
o+ ¥ [-
< wn [I "I
T O A P —m— ¢
g O [] I
Q ~ 1] + —_—— 4
ool | + — + 1 1
< A [-4 1
1 ' O
.W '
> ! 1
+ + —— +
2, 1 A
13 1
[\
1
L 1 + —— +
w0 1 1
- o 1]
—~ | [Ta W]
1 ' 1
B + [} t
n g + —— +
o] © A
[| g1 !
BB 5 |
1 '
RM T + ——+
1 I]
= 44 1 1
[1'ey ot 1 N
le) 1 1
a 1]]
+ — + + —_—+
G P]] A
o q = '
o + (= 1
T E U PV H | —m————— 4
QS e g
Q O ! |
mAQ + — +

e TErS
|

I
+o--—t--+

|3

I 8 |
+-----t

$o-m- -t

FREE LIST
9
tommmmt

to---—+

+-----+
T
+-----+

#--=>| PIN |---->| PIN |---->| PIN |----->|PIN | 0

Head of
Free List
ot

|$RTFR |

RT Partition Lists Linking

Figure 1-3.

1-7

Dispatcher

1.3 DISPATCHER CONTROL FLOW

Figures 1-4 through 1-6 illustrate the decision flow of the dispatcher.

1.3.1 Dispatch Task Director Routine $XCQ

Referring to Figure 1-4, the dispatcher first checks to see if a program
terminated or aborted on last access to the operating system. If so, $XCQ
immediately exits to the cleanup routine, ABORT, to free all resources.
This is done because an otherwise dispatchable program could be waiting on a
resource held by the aborted program. In the case of abnormal terminations,
the program has been aborted for doing something very wrong and you must
clear and reset the program resources (particularly peripherals) so that
other programs are not affected.

Next the dispatcher checks for program state transitions by checking whether

or not $LIST (the state transition routine) been called. (An example of a

state transition is moving a program from scheduled to I/O suspended.) If a
state transition has occurred, the scheduled list may have been affected by,
for example, a high priority program that has just become unblocked.

If no state +transitions have occurred ($LIST=0), the last interrupt or
operating system service routine was non-significant and $XCQ exits to $IRT.
$IRT will return to wherever the CPU was before the last interrupt, either
the last user program executing or the idle loop.

If a state transition did occur, the dispatcher sets $LIST=0 and starts into
what is potentially a very long algorithm to determine which program should
execute next. It does this by driving itself with the scheduled list. The
scheduled list is ordered by priority, with the highest priority programs at
the head of the list. The dispatcher picks up the first program in the list
and sees if it can be executed. If not, the dispatcher checks each
following program on the list until an executable program is found (i.e.,
the program is in memory and in state 1).

Before beginning the program execution algorithm, the dispatcher calls $SIP,
a microcoded optimization routine that checks for and services any pending
system interrupts. This is done to assure a ‘'clean slate", as far as
interrupts are concerned, prior to dispatching a program.

When all pending interrupts have been serviced, the dispatcher begins at the
head of the scheduled list (highest-priority programs) to select a program
for execution. The program at the head of the 1list is not logically
blocked. If a program was previously blocked, however, it is possible that
the program is not in memory, and must be brought in from disc.

1-8

Dispatcher

Continuing with Figure 1-4, the Dispatcher then checks to see if this was
the last program to execute. If so, the time slice is checked and if the
time slice has not ©been used, jumps to REENT. REENT resets some of the
words in the base page communication area, sets up the memory protect fence,
and then goes off to $IRT. $IRT will reload the program registers and do a
UJP to the last point of suspension of the program.

If this program was not the last to execute, the Dispatcher checks to see if
the program is still in memory or is a memory resident (type 1) program.
The latter check is made at X0030 and, if it is, control is transferred to
XOF40 which then goes to REENT to dispatch the program. Next a check is
made to see if the program is assigned to a partition. If so, control is
transferred to the routine associated with the partition type (RT, BG, or
mother).

If the program is not type 1 and 1is not assigned, the Dispatcher checks the
program type (BG or RT) and then checks the program size to determine if a
mother partition will be required. If the program will fit into a
non-mother partition then the program goes into a normal partition
regardless of whether the program is RT, BG, EMA, or shared EMA. (In
earlier operating systems, EMA programs always went into mother partitions
no matter how small the EMA program was. To improve execution speed,
RTE-6/VM avoids using mother partitions whenever possible.)

Once the the partition 1list to search has been determined, control is
transferred to that routine. Note in the flow chart that the transfer of
control is to the same place for both assigned and unassigned programs. In
one case the user makes the decision, in the other case it is made
programmatically.

At this point the flow of control diverges to one of:

1. Process background program (X0100)

2. Process real time program (X0200)

3. Process mother program (X0300)
These three routines are actually identical; control is split because each
code area has a disc $XS10 call to load or swap a program. Since the $XS10
call is linked through the actual call it must complete before it can be

reused. Separate calls were used for the various program types so that one
type will not have to wait for loads and swaps of another.

1-9

Dispatcher

MOST SYS REQUEST EXIT
TO THIS SPOT

YES, IF A PROG HAS
JMP TERMINATED OR

ABORT, ABORTED GO UP
THE RESOURCES

ANY
PROGS TERM
OR AB;)RTED

NO

ﬁg; NO, GO BACK AmRANSITIONS

DO WHAT YOU
WERE DOING BEFORE

YES, $UST = 0 $NEXT

GET NEXT GUY
IN SCHED LIST

JMP \ yes, NoBODY cab

ILOOP EXECUTE GO DO
IDLE LOOP

THIS ROUTINE WILL SEE IF THERE ARE
ANY INTERRUPTS PENDING. IF SO, WE
DON'T RETURN. INSTEAD WE SERVICE
THE INTERRUPT AND RETURN IS TO
$XCQ. THE ROUTINE IS MICROCODED.

SET UP A BUNCH OF
POINTERS FOR LATER

JMP \ no, THIS PROG

X0030 NOT CURRENT
OWNER OF CPU

PROG EXECUTED
LAST IF XEQT

Figure 1-L4. Task Director Routine $XCQ Flow Chart

1-10

Dispatcher

THIS
GUY BEING YES
LOAoDED

NO, EITHER ON DISC
OR IN MEMORY. (NOT IN
PROCESS OF BEING

AT THIS POINT WE BROUGHT IN)

KNOW THAT WE WANT
TO EXECUTE SOMEONE

WHO DID NOT EXECUTE NO THIS
LAST, THAT PERSON PROG XEQT
MAY OR MAY NOT BE 2
IN MEMORY
YES
THIS
GUY BEING YES reser ¥
LOADED TIME
YES NOW ouT
TRY NEXT ?
GUY. "o o
MEMORY
RESIDENT
TYPE 1 L4
PROG
2
T GO JMP
NO P Y& DisPATCH REENT
XOF40
PROG
YES ASSIGNED NO
A PART'N
2
JSB GET SIZE
$GTSZ | OF PROG
SHARED NO

WILL

PROG FIT

INTO NORMAL
PART'N

WILL

PROG FIT YES
NO INTO NORMAL
NON-SHARED
EMA PART'N
el
JMP BG
X0200 g?

BG

BG
RT

JMP
X0100

JMP
X0200

8200-130

1-4.

Figure

JMP

SNEXT

NOTE THAT

RTIME CATCHES
FACT THAT TIME
SLICE IS USED

UP AND MOVES
PROG WITHIN HIS
PRIORITY IN SCHE'D
LIsT

GO CONTINUE WITH
XEQT AS ITS

THE HIGHEST
PRIORITY PROG

NO. JMP
FIND X0300
A MOTHER
PART'N
JMP
BG X0100
AT
IMP
X0200

Task Director Routine $XCQ Flow Chart (Continued)

1-11

Dispatcher

CONTROL IS TRANSFERRED HERE
WHEN WE ARE LOOXING FOR A
DISC—-RESIDENT PROGRAM

SET UP WILL SET UP POINTER TO BG,
3FPTN IS RTE-6/VM'S FIND A POINTERS TO RT, OR MOM LIST ALSO SET

THEM UP FOR FREE, DORM, AND
FAR TN RN Moo | PROPER LIST | 4170cATED PORTION OF LIST
SFPTN WILL FIND THE PART'N

AND RETURN. IF THE PROG IS

NOT IN MEMORY IT WILL RETURN
TEE CURRENT BEST PARTITION TO
USE. (THAT PARTITION MAY HAVE
ANOTHER PROGRAM IN IT.) IF NO
PART'N CAN BE FOUND SFPTN DOES
NOT RETURN. RATHER IT GOES
BACK TO SNEXT TO LOOX AT THE
NEXT GUY IN THE SCHEDULED LIST.

IMP xo ANY
XN120 PROGRAM IN THIS
SO GO READ PROG PART'N
OFF DISC INTO THIS
PARTITION
X0230
SEE IF HE IS

REALLY IN MEMORY OR

IS DMAing IN NOW NO, SO WE MUST

SWAP RESIDENT

TRY NEXT
GUY IN
SCHED
LIST

YES, SEE IF OCCUPANT
IS SWAPPABLE

\

11

Figure 1-5. Task Director Routine XOxxx Flow Chart

1-12

Dispatcher

LOAD OVER OCCUPANT. HE'S SWAPPED
OUT ALREADY OR TERM SERIALLY REUSE.

(P+1) ABORT JSB
$ (P+3) i}
IMP SWAP OUT
20152 (P+2) OCCUPANT
S o
WE WERE IN PROCESS OF LOADING]
SOMEONE INTO THIS PART'N. HOWEVER, T A VEEDED
X0152 WILL STOP LOAD AND ALLOW v
THIS HIGHER PRIORITY PROG TO %%}’TE Pml}% S%%A%Pn?fo
HAVE PARTITION. OCCUPANT CONTENDER
sXCQ JSB COMMITS
cOMIT) PARTITION
J PROGRAM
CLEAR LOAD JSB\ SETS UP QUADS FOR DISC
IN PROGRESS LOAD/SWAP REQUEST
BIT SET $PRES /
$LIST + 0

$NSWP WILL SEE

IF MORE_DISC
XFERS ARE JSB \ DO ANOTHER
REQD IF so ($NSWP

IT DOES DISC
QUADS AND
MAPPING

SETS UP MAPS TO DO
31K TRANSFERS

HANDLE

DISC 1/0
DISC ERRORS

COMPLETION

yes /[JMP
$TOP
NO

JMP\ GO DO NEXT
JMP NEXT) SUY ON
$XCQ/ BEGINNING N SCHED LIST

Figure 1-5. Task Director Routine XOxxx Flow Chart (Continued)

NO

1-13

Dispatcher

MAT STATUS = PARTITION STATUS

L.E., IS PROGRAM IN

JMP NO
$NEXT/ GET NEXT ?3"%“ ,? N AND READY
PROG IN
SCHED LIST YES, PROG IN PARTITION OR PROG
SWAPPED OUT BUT STILL IN
MEMORY.
0K, SO GET

MAT STATUS |
=1

NO, COULD BE A SWAP BACK IN
THOUGH

GET SWAP TRACK ADDR
FROM ID SEGMENT

THIS
PROG JUST
SWAPPED

v X0040 WILL SET UP PROG

BASE PAGE AND GO TO

JMP REENT. REENT WILL SET

X0040 /] UP MEM PROTECT FENCE
AND GO TO 3IRT WHICH
LOAD UP PROG REGISTERS
AND DOES A UJP INTO
THE TARGET PROGRAM.

Figure 1-5. Task Director Routine XOxxx Flow Chart (Continued)

1-14

GO SWAP EACH SUB
PARTITION AND
SET CHAIN BITS

Dispatcher

o

GET LAST PART'N
PROG WAS IN

CALCULATE REQ'D
PARTITION SIZE

%

GET NEXT PART'N
OF FREE LIST

UNLINK PARTITION
FROM FREE LIST
PUT INTO ALLOC

LIST

Figure 1-6.

Task Director Routine $FPTN Flow Chart

1-15%

YES, RESIDENT
ALSO IN SCHED
LIST

Figure 1-6.

1-16

RESIDENT
PROG IN SCHED
STATE

Dispatcher

I XX l THIS SAME CODE IS USED FOR

BOTH DORM AND ALLOC LIST

GET NEXT PARTITION
IN ALLOC OR
DORM LIST

YES, CAN'T FIND A

PART'N TO RUN THIS
GUY. GO GET NEXT
GUY IN SCHED LIST

PROGRAM CORE
OCKED

PRIOR. OF YES
ONTENDER BETTER
HA HORRAY WE
FOUND ONE

| NO, RESIDENT NOT IN STATE 1

Task Director Routine $FPTN Flow Chart (Continued)

JMP
$NEXT

Dispatcher

The routines are charted in Figure 1-5. Pointers to the appropriate lists
are first set wup: at X0100 pointers to the BG free, allocated and dormant
lists are set up; at X0200 the RT pointers are set up; at X0300 the mother
partition pointers are set up.

$FPTN is then called. $FPTN is the Dispatcher "find a partition for this
program’ routine. $FPTN will find a partition if possible and return the
following MAT pointers to set up the appropriate partition:

MLNK Points to word 1, link word.
MPRIO Points to word 2, priority of occupant.

MID Points to word 3, ID segment of resident
or owner of the partition.

MADR Points to word Y4, starting physical page
of partition.

MLTH Points to word 5, the number of pages in
the partition.

MRDFL Points to word 6, partition status word.

MSUBL Points to word 7, the next subpartition
pointer word.

Figure 1-1 shows these pointers graphically. $FPTN will return pointers to
the partition that is the best match for the program. (If the program is
already resident in a partition, that partition is returned in the "M"
pointer.)

Figure 1-6 shows the control flow for the $FPTN routine. (A detailed flow
chart of $FPTN is included at the end of this chapter.) $FPTN first checks
to see if the program is still in memory, by extracting the MAT table index
of the last partition the program was in from ID segment word 21. If the
MAT table MID entry has that ID segment, the program is still resident in
the partition and $FPTN returns with the MAT pointers set up.

If the program is not still resident in its last partition, it is not in
memory and a partition must be found for it. In this case $FPIN checks to
see if the program is assigned to a partition. If so, that partition is
inspected to see if there is an occupant. $FPTN returns if the partition is
occupied; if the partition is free, it is removed from the free 1list and
moved into the allocated list. $FPTN then returns.

If the program was not assigned a partition, the partition lists must be
searched to see if a suitable partition can be found.

The free list 1is searched first. If there 1is an empty partition, the

1-17

Dispatcher

program will execute there as that memory is currently idle. A number of
factors could preclude a partition from being used; each factor is checked,
as shown in Figure 1-6, and $FPTN returns if any factor is true. When a
free partition is found, it is removed from the free 1list, placed into the
allocated list and $FPTN returns.

If no free partition can be found then a search is made of the allocated and
free lists. Again, several things may prevent a partition from being used.
If a suitable partition is found, $FPTN returns. No partition lists need to
be modified as the target partition is not currently in the free list. If
no suitable partition can be found, $FPTN jumps back to $NEXT to see if the
next program in the scheduled state can be run.

Actually $FPIN will try a few other things to find a partition. As
mentioned, a detailed flow chart of this process is included at the end of
this document. It should prove interesting for those stout of heart and
strong of mind.

When $FPTN returns, the X0100 code checks to see if that program is in a
partition. If so, it goes off to X0230 which checks to see if the program
was Jjust swapped in. If so, $SPIN is called to adjust the saved map
registers to account for the new partition. (Refer to the section on
swapping for more information on $SPIN.)

On return from $SPIN, or if the program was not just swapped in, the X0230
routine goes to X00L40 to set up base page and dispatch the program.

To summarize, X0100 called $FPTN to find the program a partition. Upon
discovering that the program was still in memory, the dispatcher merely
transferred control back to that program.

The next case is where §$FPIN returns a partition that is empty. In this
case, XN120 is executed. This routine is used to read a program in from
disc or swap a program out to disec. In the case of a load into memory,

parameters are set up in the $XS10 call to indicate that the call is busy
now and that it is a read from disc. In addition, the MID word in the MAT
table is set to the ID segment of the program. Setting the MID word commits
the partition (by means of the COMIT routine). Next $PRES is called.

$PRES is used on load and swaps. In the case of a load, $PRES merely looks
up the track and sector address of the program from the ID segment,
calculates the number of words to transfer, and builds an $XS10 quad. Next
$MPIO is called. $MPIO sets up information on the unused portion of the
users base page that RTIO6 looks at. It sets up the starting page of the
transfer and the number of pages left in the program to be brought back into
memory. RTIO6 uses this information to set the DCPC port maps to load the
program into memory in increments of up to 31 pages. (You cannot use 32
pages because DMA respects the base page fence.)

Now the $XS10 call 1is made. Recall the $XS10 has two returns. One is the
return from the subroutine call, and the other is the return from RTI06 when

1-18

Dispatcher

the disc I/0 is complete. When the subroutine returns, the Dispatcher goes
to $NEXT to see if there is another program it can dispatch.

On completion of the disc $XS10 call, a return is made to the completion
address specified in the call. At this point the dispatcher calls $NSWP to
see if the program being brought back into memory was greater than 31 pages.
If so, $NSWP will set up the next disc quad and call $MPIO to set up the
next 31-page transfer. This loop continues until the entire program is
brought into memory. When the entire program is in memory the $XS10 call is
set free, the ID segment load in progress bit is cleared, and control
transfers to $XCQ. $XCQ starts the whole process over again only this time
the program will be in memory when $FPIN returns.

Referring back to Figure 1-5, the last path to consider is what happens when
$FPIN returns a partition and that partition is occupied. In this case a
call is made to the $SWP? routine to see if the resident program may be
swapped by the contender. (The $SWP? routine is shown in Figure 1-8,
located in the section Swapping.) If the resident program can be swapped,
$SWP? returns; if not, $SWP? goes back to$FPTN to find another partition.

$SWP? will return one of three ways:

1. Return One loads over the current occupant (this is the same as if the
partition was empty.

2. Return Two signifies that the resident program is in the process of
being loaded into the partition but the contender has a better priority.
(This return allows the caller to abort the residents load into memory
if desired.)

3. Return Three signifies that it is all right +to swap out the resident
program. In this case the X0100 code takes on a different aspect.
Instead of being called to 1load a program into memory it now swaps a
program out. (The same $PRES, $MPIO, and $XS10 calls are thus used to
do writes to disc as well as reads from disc.

One other routine, $SOUT, is called on the swap path in Figure 1-5. This
routine saves the users maps in his base page so that when DMA writes the
program on the disc the current map registers are saved on disc too.

1.4 FINAL DISPATCH

The final dispatch (redispatch) routines X0040 and REENT have been
previously mentioned. At this point the program to execute next has been
determined, and the Dispatcher now implements the decision. The first call

is to $SUMP to save the map registers of the last program that executed and

then set up the map registers of the next program to be executed.

1-19

Dispatcher

The base page communication pointers are then set up. The logical address
bounds of the program are set up in RTDRA, AVMEM, BKDRA and BKLWA, and the
ID segment pointers are set up at XEQT. The X/Y registers save area address
is also set up at XI. If the progam priority is higher than the time-slice
limit, the time-slice set up is skipped. If ID word 30 1is less than zero,
it is wused the time-slice value. Otherwise, the time-slice value is
calculated by using the program's priority in the following equation:

Program Slice Value = Sys Slice * Z + SYS Slice

Where:
SYS
Slice = 1500 ms default. This value (1.5 sec) may be
increased or decreased via the QU command.
Z = bits 8-11 (isolated and shifted right eight

positions) of the programs priority.

Define $LICE to be equal to ;the address of ID 30. If 1ID 32 is a positive
value, define $DCPU to address the CPU usage location of the session control
block.

Now that the program is ready to execute, the address of where to begin or
resume execution is determined. If the point of suspension address is zero,
control is given to the program at the primary entry point. If the point of
suspension is non-zero, control is returned to that address. The memory
protect fence is set up according to the Memory Protect Fence Table index in
the ID segment. Control is then turned over to the program by exiting
through $IRT. This routine enables memory protect, and enables the
interrupt system and user map. The memory protect fence table is shown in
Figure 1-T.

1-20

Dispatcher

ADDRESS TO PLACE INTO MEMORY PROTECT FENCE

$MPFT WORD 0 | DISC RESIDENT ADDRESS, NO COMMON |
s |

WORD 1 | MEMORY RESIDENT ADDRESS, NO COMMON |
TR |

WORD 2 | ANY PROGRAM ADDRESS, COMMON 0 |

| -mmmom oo oo oo |
WORD 3 | ANY PROGRAM ADDRESS, COMMON 1 |

WORD 4 | ANY PROGRAM ADDRESS, SSGA |
WORD 5 | PRIVILEGED PROGRAM ADDRESS, NO COMMON |

WORD 6 | TYPE 6 PROGRAM |

Figure 1-7. Memory Protect Fence Table

1.5 SWAPPING

Whether a program may be swapped or not is determined by the $SWP? routine,
shown in Figure 1-8. A program is swapped out of memory to make a partition
available for another program to run. The first programs chosen to be
swapped are those in the dormant 1list. These programs have terminated with
either the save resources or serially reusable option, or are operator
suspended and still in memory. Following these, programs with the lowest
priority will be checked, in priority order, for swappability.

Referring to Figure 1-8, you can see that $SWP? not only checks the program
for swappability but also considers the more general case of whether this
partition can be used without a swap. $SWP? has four returns: P+1 through
P+h.

The P+1 return is made when $SWP? finds that the contender has higher
priority than the resident and the resident is not yet in memory. That is,
$XS10 was called to read in the resident but the completion interrupt has
not yet occurred. On return, the caller will have the opportunity to decide
whether or not to abort that $XS10 request and give the partition to the
contender.

1-21

Dispatcher

RETURNS
$SWP? IS THE SWAP CHECK
ROUTINE

ABORT LOAD.i.e. WE WANT TO

P+1 LOAD THIS GUY NOT OTHER GUY

P+2 SWAP OUT OK

P+3 JUST GO USE PART'N

Prd CAN'T SWAP
(SPECIAL FOR SUBPART'NS)

PROG ALREADY
SWAPPED OUT

YES, /O GOING
ON INTO THAT

PART'N
P+d4 YES
RETURN

TRY LATER, GO
DO NEXT PROG
IN SCHED LIST

RESIDENT
CORE LOCKED
OR

SHARED
EMA

SPECIAL

SUBPART'N

CHECK
e

PROG
ASSIGNED
TO PART'N

YES, PROG /O SUSPENDED

RESIDENT
LOWER PRIORITY
& BEING READ
IN
?

RESIDENT

STATUS =1 &

ALSO HIGHER

PRIORITY
2

YES

FORGET
IT

GO FIND

PARTITION FOR DISPATCH.
THIS PATH RETURNS TO
$FPTN.

RESIDENT

HIGHER PRIORITY

& BEING READ
IN

YES

BUFFER
IN REENT
AREA

ANY
SWAP
TRACKS

YES

SWAPPED
ouTt

BUFFER
LOWER THAN
PROG ALREADY

NO

YES. BUFFER MUST
BE IN SYS COMMON

POINT
OF suUsP
=0

YES

JUST LOADED OR
TERMINATED
BARELY REUSEABLE

NO

o/ P+2
7"\ RETURN

Figure 1-8. Program Swapping Routine $SWP? Flow Chart

1-22

Dispatcher

The P+2 return signifies that the resident can be swapped out. This return
is made when the resident is of lower priority and in a swappable state
(regardless of program state), or when the resident is of higher priority
but the program state is not 1. Thus it 1is possible for low priority
programs to swap higher priority programs, provided the high priority
program is in some blocked state (for example, waiting for a son program).

The P+3 return is made when there is a resident in the partition but it is
not necessary to swap that resident out. That is, the resident can be
overlaid. This return will occur if the resident has terminated serially
reusable, if the resident is already completely swapped out, or if the
resident was loaded into that partition but has not been executed (i.e., the
swapped disc image is still good).

The P+4 return is a special return used for subpartition checks on a mother
partition. It prevents $SWP?, when it finds that it cannot swap the
resident, from jumping back into the $FPTN routine to 1look for another
partition for the contender.

When $SWP? returns the P+2 condition, the following events occur to complete
the swap:

1. Map registers are saved, if necessary

2. Disc space is reserved on the system disc, LU 2, and auxiliary disc, LU
3, for the swap.

3. Mapping information set up for RTIO6 to perform swap in 3l-page
increments

4. The required $XS10 calls are made.

Referring back to Figure 1-5, you can see the progression on the return from
$SWP?. The call to $SOUT saves any map registers on the unused portion of
the user's base page.The call to $PRES gets the disc space required and
calls $SETD to set up the quads for the $XS10 call. The call to $MPIO sets
up the unused base page for $XS10 to do 31K I/0 transfers. Figure 1-9 shows
the structure of the user base page.

1-23

Dispatcher

1777TB +-------------"---"o-oom o~ +

| MAP REGISTER SAVE AREA | User map save area

| | modified by $SOUT,

| | if necessary
1740B |---==-~-mmmmm e |
1737B | # OF PAGES TO SWAP OR LOAD | \

|=mmmm e e e - | > Set up by $MPIO
1736B | START PAGE OF TRANSFER | /

D |
1735B | LAST PAGE OF OLD PARTITION | \

R e e T T | > Set up by $SOUT
1734B | 1ST PAGE OF OLD PARTITION | /

[——— |

| |

| |

l |

l |

l |
1500B | |

[====mmmmmmm e |

I |

| l

| |

| USER BP LINKS |

| |

| |

| I

l |

2 dmmmmmeemc e +

Figure 1-9. User Base Page

Later, the dispatcher will bring the swapped out program back into memory.
RTIOC will call $SMAP to build a map identical to the initial load map for
the swap back into memory. This map is not wused to execute the program,
rather, a call is made to $SPIN after the program is brought into memory.
$SPIN rebuilds the user map and stores this map in words 1TU4OB to 1777B of
the user's base page (i.e., the first page of the partition). $SPIN does
this by mapping the first page of the partition into the driver partition
and comparing the map information of the o0ld partition with the new
partition. Recall that, before the swap, $SOUT saved the information on
partition and maps. $SPIN will now use this information to set up the new
maps. If the partition start page saved on swap-out is the same page number
as the current partition (i.e., the program was swapped back into the same
partition), the map information does not need modification. $SMAP will use
this to set up the user map registers. If the program is being swapped into
a different partition, the map registers must be modified. The algorithm
used to do this is:

1-24

Dispatcher

If: LOW$ =< OP# =< HIGH$

then NP# = OP#-OSP# + NSP#
else NP# = OP#

Where:
LOW$ = Program start page number in the old partition
HIGH$ = Program last page number in the old partition
OP# = 01d page number of the current map register
NP# = New page number to place in the map register
OSP# =

Old partition starting page number

NSP# New partition starting page number

This algorithm ensures that the map set up when the program executes
reflects the program's state when the program was last swapped out. In
addition, the algorithm also ensures that map registers pointing outside the
current partition (to a shared EMA partition for example) are not modified
by the swap. If an EMA or VMA program is swapped into a different
partition, the start page of the EMA word in the ID extension is updated to
the new physical page no.

Allocating disc space for the swap is done by $PRES via a call to $DREQ.
$DREQ examines the track assignment table and allocates tracks from the top
down (as opposed to user track allocation requests that are from the bottom
up). When the tracks are returned, $PRES calls $SETD to set up the $XS10
quads.

If $DREQ returns with not enough tracks available for the swap, the
diagnostic message

XXXXX NO SWAP TRACKS

is printed, where XXXXX is the program it tried to swap. This message will
only be issued 30 times in the life of a boot. If seen repeatedly, contact
your local Hewlett-Packard representative.

The problem 1is that when this no disc space condition occurs the message
could be repeatedly issued until an operator frees some disc space.
Consider a situation where the highest priority program in the system cannot
get into memory because the only partition it will run in is occupied by
another program that cannot be swapped due to no disc space. In this case,
when a low priority program makes a state change (i.e., unbuffered 1I/0
request) the system returns to $XCQ. Recall that at $XCQ the dispatcher
scans the scheduled 1list and will again try to dispatch the high priority

1-25

Dispatcher

program. It cannot due to no disc space and so again prints the XXXXX NO
SWAP TRACKS message. Under this scenario the message would be printed
forever or until some disc space is freed up.

Since swapping occurs on LU 2 and LU 3, and these discs may have up to 1600
tracks, this error should not occur if you reserve a minimum of 200 free
tracks for swapping. To see if this is enough space for your needs, run
LGTAT several times when the system is busy and see how many contiguous free
tracks there are. If there are less 50 free contiguous tracks you have not
allocated enough tracks to the system.

1.5.1 Partition Priority Aging

The new RTE-6/VM operator command AG allows partition priority aging
(NOT program priority aging). This command, invoked by entering AC,x (where
x = some number of tenths of a millisecond), causes the partition allocated
list to age by the specified increment. This process occurs in the
dispatchers $AGE routine. The routine RTIME counts down X, and when X=0,
the $AGE routine is called. $AGE goes to the state 3 list that contains
programs that are blocked for buffer limits, father son waits, resource lock
waits, etc. For each program the state 3 1list that is also resident in a
partition, the partition priority is aged by 2 and the partition relinked
into the partition list by its new priority. The effect is that, over time,
programs that are blocked for one reason or another have their partition
moved to the head of the allocated list where they are more likely to be
swapped.

When the blocked program becomes rescheduled and redispatched, the partition
priority is set back to the program priority and linked back to the proper
place in the allocated list. This process is shown graphically in Figure
1-10.

1-26

Dispatcher

ALLOCATED SWAP SEARCH DIRECTION
LIST HEAD = = =-====----m-omooo >
R + Ammmmmme- e + - +
| BASICY |-->| BASIC1 |-->| BASIC2 |-->| BASIC3 |----- +
+o------- + | 9 [| 9 | | 90 | I
D e + Hemmm——-e- + |
I
e T T e T TP +
I
| Fommmm—- + 4-—----- + 4---—--- I e it +
+--->| FMGR1 |-->| FMGR2 |-->| FMGR3 |-->| FMGRL4 |
| so | | 5 | | so | | 50
R S + Hmmmm--- I +

Figure 1-10A. Allocated List State Without Aging

Figure 1-10A shows the state of the allocated list without aging. When the
fourth BASIC is run, attempts will be made to swap out BASICl, BASIC2,
BASIC3, FMGR1, FMGR2, FMGR3, FMGR4, in that order. That is, swap attempts
are in the order +the program is in the 1list. Unfortunately the swap
attempts on BASIC1l, BASIC2 and BASIC3 are often successful and thus the four
BASICs contend for three partitions while the four FMGR partitions go

unused.

ALLOCATED
LIST HEAD
$o-mmmm e + 4------- I I +
| BASICY |-->| FMGR1 |-->| FMGR2 |-->| FMGR3 |----- +
Frommmmmm- + | 32767 | | 32767 | | 32767 | I
tomm - + Fmmmm—— - + $mmm— - + |
I
R et +
|
| domm————- + +--mmm - + R + R +
4+--->| BASIC1 |-->| BASIC2 |-->| BASIC3 |-->| FMGRL |
| 90 || 90 | 90 1 50 |
$o-mmmm - R R + H------- +

Figure 1-10B Allocated List State with Aging

Figure 1-10B shows what the allocated list would 1look like if aging were
very fast when the fourth FMGR issued the EXEC request to schedule BASICL.
Note that the FMGRs (except FMGRY4 which is executing) have marched to the
head of the allocated list. Now when the fourth BASIC is run, a successful
attempt to swap FMGR1l is attempted and all the BASICS will have their own
partition.

1-27

Dispatcher

1.6 PROGRAM TERMINATION/ABORTION

Program termination is orchestrated by the dispatchers ABORT routine. ABORT
does not do the actual clean up, rather it calls the routines to do the
clean up. It handles both normal and abnormal program terminations. ABORT
does the following:

1. Sets the CPU ownership flag, $BOWN, to O if this program was the
currently executing program.

2. Releases any program swap tracks.

3. Calls DS/1000 if it is installed in the system to do network clean up.

4. Advances the termination sequence counter in the ID segment. This is
used by D.RTR to do clean up on files opened but not closed.

5. Clears out the session pointer.

6. Calls $ABRE in EXEC to release any reentrant memory.

7. Calls $RTST to release any string memory.

8. Reschedules any programs waiting on the aborted program. For example,
the program's father.

9. Calls $TRRN to release any resource numbers owned or locked by this
program.

10. Calls $EQCL to release any EQT locks.

11. If this is a shared EMA program, counts down the number of active users
of the data area. If the count reaches 0, the $ECLR 1is called to
release the shared EMA partition.

12. Calls $F.CL to clean up class I/O requests. Note that $F.CL handles
normal and abnormal aborts in different ways.

13. If the program terminated serially reusable or saving resources, the
partition is not returned to the system. On a normal or abnormal
termination, the partition is moved from the allocated back to the free
list.

1-28

Dispatcher

At this point all program resources have been cleaned up. Return is again
made to $XCQ. If more programs are to be aborted, $XCQ will again call
ABORT to clean up. Note that from a resource allocation standpoint, doing
the resource clean up first makes a lot of sense. Other programs in the
system that wish to be dispatched may be blocked on the resources that are
held by the terminating program.

1.7 OVERVIEW OF TIME-SLICING OPERATION

All programs competing for the central processor access it in an orderly
manner, under the direction of RTE-6/VM. The system places programs into
the scheduled 1list in order of their priority. When a program completes,
terminates or is suspended, the RTE-6/VM Dispatcher searches the scheduled
list for the next program of highest priority, and transfers control to it.

The scheduled 1list (see Figure 1-1) is divided into logical areas, each
corresponding to a particular type of dispatching and priority level.
Scheduling within each priority can be performed 1linear or a circular
fashion.

The default priority range for linear scheduling is from 1 to 49. Programs
of this type are given processor control until the program is either
completed, terminated or suspended to await the availability of a required
resource.

Circular scheduling is performed on all program priority levels lower
(higher number) than the timeslice limit. Programs of this type are given
processor control for an interval (Time Quantum) of maximum duration (or
until completed, terminated or suspended). Control is then passed to the
next program of the same priority (queue), continuing in a round-robin
fashion until all programs of the specified priority have completed,
terminated or suspended. The RTE-6/VM Dispatcher then searches the
scheduled 1list, shown in Figure 1-11, for the next highest priority level
that has programs prepared to execute.

1-29

Dispatcher

+ +
| |
! PRIORITY NUMBER '
]]
| : ;
| 2 |
: 3 :
H 4 linear scheduling H
[} |
\ ’ \
] . 1
| . i
i 49 i
i i
i 50 i
1 51 i
i 52 circular scheduling within H
! priority levels 1
[}]
] |
! . Time- |
! . Slice H
H . Range !
| 32767 i
i i
+ - +

Figure 1-11. Scheduled List

Within the scheduled list, each priority 1level (in the timeslice range) may
be thought of as a circular queue. The program at the head of the queue
represents the next program of that priority to be executed. All programs
in the scheduled list with a higher priority (lower number) have a chance to
execute before a 1lower priority prog ram 1is entered. When a timeslice
program is entered, a maximum execution slice is set up within the operating
system. This program is then allowed to execute until one of the following
occurs:

1. The program leaves the scheduled 1list (such as I/0 suspend, memory
suspend or dormant).

2. A higher priority program is ready to execute.

3. The program exceeds its timeslice quantum.

If a program leaves the scheduled list, its execution slice is assumed
complete. Therefore, when the program is again ready to execute it is
placed at the end of the queue within its priority, in the scheduled list.
Also, when the program is again picked to execute, the original timeslice

quantum is set up.

If a higher priority program causes a program to stop executing (but it is

1-30

Dispatcher

still scheduled), the remaining execution slice value 1is saved in the
program ID segment. Then, when the program is again ready to be entered,
the remaining count is set up as the timeslice quantum to be used.

When a program exceeds its execution slice, it is moved behind (in the
scheduled 1list) all other programs of the same priority. The program
remains scheduled but execution now passes to the new head of the scheduled
list (also head of that priority's queue).

The System Manager can control the scheduled list (Timeslicing) in the
following ways:

1. Modify the system (multiplier) time-slice quantum (QUantum command).

2. Modify the priority 1level at which program is time-sliced (QUantum
command) .

3. Modify a specific program time-slice level (PRiority command).

1.8 MAPPING USER PROGRAMS ($SMAP)

Once a partition is allocated for a program and the program is about to
execute, the user map is set up for the program. If the program is being
scheduled initially (progrm's first dispatch) the user map registers must be
loaded by the Dispatcher and a copy saved in the user's protected portion of
base page. If the program is being redispatched, to continue after being
suspended or after being bumped by a higher priority program, the user map
registers are set up by copying them from the saved copy in the protected
portion of the user's base page.

A program's first dispatch is identified by the fact that the point of
suspension word (XSUSP) is 0 in the program's ID segment. The base page
register (logical page 0) is loaded with the first page number of the
partition. (That value is in word 3 of the MAT entry.) The next registers
are then loaded sequentially with numbers starting at one and incremented by
one in each successive register. The number of registers set in this manner
depends on the program type or whether or not the program uses COMMON.

If the program to be mapped is a type 6 this is the simplest program
mapping. The user base page map register is loaded with the starting page
of the partition and for the numbr of pages of the program or 31, whichever
is less, the MAP registers are sequentially loaded with the next page.

If the program type is 2 or 3, the number of registers set sequentially is
determined by one less than the value of $SDA added to $SDT2. Actually the
number of registers mapped is one less than $SDA. The next registers mapped
(number of registers is determined by $SDT2) have the write-protect bit set.
This maps into the user map's Table Area I, the Driver Partition Area,

1-31

Dispatcher

COMMON (including SSGA), write-protected System Driver Area and Table Area
II.

If the program is not type 3, the Memory Protect Fence Table Index (in the

ID segment) is checked to see if the program uses any COMMON or SSGA. If

COMMON or SSGA is used, the number of registers set up following the base
page register is determined by one less than the value in $CMST. If COMMON
or SSGA is needed, the value $SDA -1 is the number of registers to map in
Table Area 1 the Driver Partition Area, and COMMON. The user program is
mapped in the registers following these registers, pointing to the system
areas.

The next registers are loaded with the next physical page numbers
sequentially following the page used for the user base page. These are
loaded into the map registers until the number of registers specified in
word 21 of the ID segment have been set up.

The remaining registers in the user map will be read/write protected to
ensure that a program cannot access memory outside of its partition. This
mapping is all done in $SMAP, the only routine that loads the user map to
describe a specific program. It is also called by RTIOC if maps need to be
set up before entering a driver to do unbuffered I/O.

A copy of the user map is saved in the last 32 words of the user's physical
base page. The system's map register for the driver partition ($DVPT) is
used to map in the user's base page. This portion of the base page is not
used during the program's execution since the system communication area is
always mapped in on the top portion of the user base page.

With all of the above done, the program is ready to execute in the user map.

Note that $SMAP does not map memory resident programs. The memory resident
program area is static and calculated by the generator. The map is 32 words
and located at $MRMP. $SUMP sets up the memory resident map for type 1
programs.

1.9 PROGRAM SEGMENT LOAD

The dispatcher also handles program segment loads. Actually the EXEC 8
request is shared. The scheduler handles the initial portion of the
request. It does the segment name look up, passes the optional parameters,
does all the error checking, and then «calls $BRED in the dispatcher to do
the actual $XSIO request to bring the segment in off the disec.

$BRED is very similar to the X0100, X0200, and X0300 routines described
earlier. $BRED checks to see if the $XSIO call is free if so it is marked
busy and the code entered. Again $PRES is used to set up the quad for the
disc I/0. Then $XSI0O is called. On return, $LIST is called to set the

1-32

Dispatcher

program to the I/0 suspend state.

When the completion interrupt occurs, the $XSIO call is set free and $LIST
is called to put the program back into the scheduled list. Return 1is to

$XCq.

1.10 MLS DISC-RESIDENT NODE LOADS

An MLS disc resident node load occurs when an MLS program calls a subroutine
that is in a disc node that is either not mapped in or is not in memory.

When loading an MLS program, MLLDR changes all JSBs to routines in a node
down the path to JSB indirect. The JSB goes indirect through a table. If
the routine +to be called is 1in memory and mapped, the entry in the table
just has a DEF to the appropriate entry point. If the routine is not mapped
or not in memory, the entry points to the routine that calls the operating
system to map or load the appropriate MLS disc node. The routine that calls
the operating system looks like:

$DTHK NOP
JSB LOD
.DTAB OCT ZXXXXX START ADDR OF NODE
OCT ZXXXXX LAST WORD + 1 OF NODE
OCT ZXXXXX REL SEC FROM PROG START FOR NODE CODE
OCT XXXXX REL SEC FROM PROG START FOR NODE BASE PAGE
.ORD OCT ZXXXXX THIS NODE PATH #
.NOD# OCT XXXXX THIS NODE ORDINAL #
LOD NOP
JSB EXEC CALL EXEC TO DO NODE LOAD
DEF *+5
DEF =D8 MADE TO LOOK LIKE SEG LOAD
DEF EXEC+0 SECURITY CHECK
DEF LOD,I PASS IN .DTAB ADDRESS
DEF LOD PASS IN ADDR OF RETURN ADDR + 1

If the called routine is not in memory, $DTHK is called. $DTHK in turn
calls LOD, which in turn calls the operating system like a segment load
call.

The .DTAB table which has all the information about the node is filled in by
MLLDR. Actually this information is the same as the information in the
short ID segment. The only difference is that the information is buried in
the program area. Just as in the segment load request, all the error checks
(and a great deal of paranoid checks) take place in the scheduler. When the

1-33

Dispatcher

scheduler is satisfied it calls $NODL in the dispatcher to do the disc I/O
and mapping.

$NODL first checks to see if the address from which the call to $DTHK was
made was in the root. That is, did the root call a disc node or is this a
disc node calling another disc node? If it is one disc node calling
another, no special mapping is required. If it is the root calling, a quick
check is made to see if the node requested is the one currently in memory.
This is done by comparing the relative start sector of the node requested
against word 5 of the program preamble where this is saved for every call
from the root to a disc resident node. If they compare then no disc I/0 is
required. Note: this would be the case in a situation where the code might
look like:

DO 100 I = 1,1000
CALL ABC (-,-,-
CALL XYZ (-,-,-

100 CONTINUE

Where ABC is in a memory resident node, XYZ is in a disc node, and the DO
loop in the root.

With this optimization, no unnecessary disc I/0 is performed. However, a
call to $MNOD is made instead. $MNOD maps into the user map a disc resident
node area. (The map registers formerly pointed to the memory resident node
area.) At this point the new point of suspension is calculated (contents of
$DTHK -1) and saved in the programs ID segment. $NODL then returns.

If the called routine was not in memory, disc I/0 is required. If the root
is the caller, $MNOD is called first to set up the correct map registers.
In addition to setting up the correct map registers for the coming I/0
request, $MNOD calls $SUMP to save the changed map registers on the progam's
base page.

Once the map registers have been set up, $NODL proceeds like $BRED, the
segment load call. The only difference is that instead of calling $PRES to
set up the $XSIO quads, a call is made to $NSET to set up the quads. The
reason for this is that $PRES extracts the necessary disc information from
the short 1ID segment and in this case the node has no short ID segment.
Instead $NSET extracts the necessary disc information from the .DTAB table
and (like $PRES) calls $SETD to set up the quads for the $XSIO request.

When $NODL returns, the $XSIO call is made and (like $BRED) the program is
set to the I/O suspend state via a call to $LIST. When the completion
interrupt occurs, the program is placed back into the scheduled state and
control is transferred to $XCQ.

1-34

Dispatcher

1.11 SHARABLE EMA RESTRICTIONS

Sharable EMA programs require two partitions: one partition for the data and
one for the program to execute in. Obviously both partitions must be
available at the same time. The fact that the shareable EMA program

requires two partitions requires the following restriction to prevent
possible deadlock situations arising should a program attempt to compete for

itself for partitions.

For a shared EMA program or any progeny of the shared EMA program, there

must exist in the system a partition to run that program, and the partition

must satisfy the following criteria.

1. That partition is not also a shared EMA partition or a subpartition of a
shared EMA partition or the the mother partition of its shared EMA
Partition. its shared EMA partition.

2. That partition is large enough to run the program.

3. That partition is the correct type, i.e., mother, real time, or
background.

Note that if the partition is a mother partition, none of it may be a shared
EMA partition.

1.12 $FPTIN FLOW CHART

The following is a detailed flow chart set of the of the $FPTN routine.

1-35

Dispatcher

726 PFPTN Lourove /S THAT Coerrnide s4kfod </
DECRES WO 2777707 K SRosHAA HRL USE

GFo SEE 15 THIS /S
A SHACEDS Ensy JRog 40

— e SET L TEmAS
fel S BSE AS
AL o)S

o NI = pern # (0-63)

UNK = Lyg 200D
IO = L0l Lok
b = TA SE ADOK
A P SALE = /D) smer A
ML gl = Pyl # AES
WL = Ry Jemmus
MHEL =~ SuBrie7 N Sk
LGS & JrNTenN TS
o DAL

akedy ART FBIITERS
N DesCrBs EDNT
Peoglnd . CovTEnder AAS

Z forr7CLS <« E0)
ZwoRK 27T

"

FATSZ 1ore Pereryne
OoFRECT pevemtLf 4
AeTr 7000 Sr2E
CE8’D
NPEN = EBD AW
Zee

»
Gﬁ%&i’ ges, ot i wE
O St (O0UpANT

1-36

Dispatcher

SeAl Flse
LisT= foe A AAeTrnS

7 Uf
7/’9 SEAA
= 5T
o Eés [SONFR
¥ 13
GET NEYT LNTRY oA Al
kT /N IE A SUBLARTV
AIST o et VoTo
S WALHELE
N,
LeTH NS ;élq P
15 Aloml 25
Onb ot JHE 7
SwuBs NV vd of FEEE
SWAIUBLE Lrsr Le7s SeE

IF)& LAy AFND

SoNEDUE A AKLOC
o Do) Lssr

70 Swap

f YES, CAn} Y&
TH/S HeTN JnKESS
ASEIGNED THERE

LS, OanT B&
A USED Alewoe

F NO, Canr ds&
SuB v CHAN

ModeE

NO, 720 SHiL

1-37

Dispatcher

1Budd A FREE
AeTI7TI000 Y

SUBARET? 77040
AVALABKLTY

UNLNK
FROM FREE
Lrs7”

4

AACE

Pew/7y
W70 T

P INK INTE ALLOC LyST

- BET cws RSP 0O ED
=g 7o P usr 7o Be
SAFE

Dispatcher

Ansipey pyesEd
STl LS
A7 N

SuB Pag'N

No, Th &g Aeory
F RT STy

A SOUEONE AAS CAMNELN
TRAT flrsE peroerry,

RAAANPS THE SGH,
oo | P 5
> ey
KAST, LnK
ez g FHE P
AT EATES /ﬁgf
eSS
)gy/&%f//’// THIS AATH TS ser Aerv
hes oF s , FeEe €
LHERE Ry LE A%Qbfidé .
AANT RHAS CEEN IV
Swniped oUT o+ b
BEARF of A T A,

oy Ospovys A
A 7RER fARET Y .

52 WE SET ApETA d
FREE Do KEFP pul Smp
LREEPIVG STRASHT o
INO G LooK ol He /6
ANOTHEL PRk 77 e)

1-39

Dispatcher

S8 aps

WAS AsspudD 7D
A TN L) S
NOT (ks =g

N TRET TN
NOTE 7HhHAT fREO4LS
AN 7T Bs Assisved
7o CHAN LT NS

UNASSIGN
] | o4

#S (= Sfeos Aswna
7o SuB
Ao~ B, =/ /:Jb”;;@ oYYy
¢ o e
Fo€
b SWAPAGI I7Y
=1/ 5 0=/ of A,
w= ?J C':
78 Mo, &0 @
Clieex Fot g
60)/??0 A=l C=/
PES
mpe M=/ ,0<
U,BA'6 v
& M=/ ¢=

QHECK <85S OAN NEJER A4
IE JHRTN LS

SWASROKLTY EmPTY

AND NOT /A
CHAN) SO

Lers UsE 17,

UL INK Loef
[HEE /ST

Nowd &L LN
N ALLo ¢

Lrer~ O
HSE— F4Er D

1-40

Dispatcher

od SHs Kre
ASSHNED 7D
SuB 4o A o7
A Ao THER RETHN

CREAXD , LeT3
~ | FOGET RE0U) THAS Fof
A e,
T8
WTAD = Se&7 Uf 78T

SPNTERS FEL oA
D S <~ o

y SWAPRAELE
[- SflK |
)

seT ,
mip :4¢ LlcE JreT N

Sk ense Moo
@ AOD AL SUBS

ANDEM

e MAT
ENTCY of

Y c
Lt

L M S Qrotz g
LoRD 1~/ THE Guy
UNUNE J#on A : KD L&D PR 7K/
ANK 7/0D y _ -
Wo'y B ABLE T2 LeT

FHREE Lysy - x
nmi;Céxzmes Aot £ L/ AN FHeid (4éic

1-41

Dispatcher

[EAACD X oF
EE LisT gobd
ey ANo7 fonvd A
JAeT N

/?“7/9;4/ L _— TUIS /S Do~E So
’%‘5 D& O SEe)15 s

PLes FOLoEL A SwApP
N THE AT

‘ CHECKS 7o SEe
e N /S
OF blerer

Fas € 75

GE THIS
)1 D5~ Corente R YACT W 72
THE Gyrndet
beunK Ry bo TRY
BY N AL o
s Lisr
Y 227264

ENTEY HeRE HLSO
Y Fsawps

e

Dispatcher

SCNTABLE AALOCHTEDN
R0,

amP

/0

Vi
NO, NoT A Sab ARTR ok
| yor perwE N
CHasred Aedg-

/ M=y ,0=)
Ee o>

? = @)c;¢
‘(’""’ b G=O>4'l_ d‘”f/

1-13

Di spatcher

[focnwrd A0 ALoc.
aern of Coeclece’
s/2¢&
M=(, C=/ o
HN=0, €=¢

GeT
Lsreor
vg)) 402

£EQuAai

('wffuoe ’
AR VE YHE AFT N

S, CN) uSe
YHS Guy

TEY To TRAE yuys
Aery o
A2s1pe07

y SET- FART N PF
W7D (e 7ZADELS

ZD {tg weed &/
JIRT AINTERS ' @
Tp T &

FOUND + KET [HLEEL (LD CrsVT SanpRABnTY

1-4Y

Dispatcher

AT YH/S porwT o Arves
Senfeded Fre, Dol

EALROC KIST Qb Aoy
Foud A JUETN

KETS Se& /5 QoY EMA

Loo'7 Kook pau ¢y
FARTHER | Y= ResT™
Of TAS Corc /S
ORIEV]ED TEw4£BS

pRoss REL A DoM

RIST) TF S #2E RV
Hee— TAAT Pl N5

bl A Sus/7ABLE

o Sués,
z 7;4 TempP < I1BEBE 1 K7 LisT
A4S =B F Ly sy

TS /S
AL A CHEG N
on) Heaf.)
@sedsw &/&

(neoK
SuBS

1-45

1-46

Dispatcher

2T uf
Fpl suB
QPT'N Stpw

Y

NO, SEC 15 VAL iﬂn”
e oy soce CRY
Deacstnoy AouS

—SET AR BNSEELS
Vo VA4 S«qf

e (RRTN H sATD
HoES ID SE&EMET

2o THIS Bydl qony pidows
A oleCK o Mows
Trs 237 uMsenpnpes
Ao 1S5 Feub, <t

FADS M Aails Swprk’
ANE [2S AeT— Brurt,
(g TS Coucd Be

ﬂﬂﬂQﬁ&Z&)

Dispatcher

MO LRETN Lan Be
Foud 28 VHE
ConZzAndDEE .

KO, 6 FArrTy LE0Ls
So FAR TH/S Boov,

EAL , TT Rpof'S
Lk LE

CAav 5+ Foud
A Blrw
oL TS

4eT S?es'.__z_/)’géiii’
TwrEd o

Qo) 761D £

52 k7% cok
T NER T G N
1 SN ED LIS

T— M TS 5
usEL Jo
FAKE V-
P ffote=E

REo€T™ (Con7END

Dispatcher

fREE KIST NS Beea)
SEACINEDL AND YAUS
FREE PO wWeEre ZOAS

o 1 A& Nodw
CUECK o AVAZABKLTY
OF EACH St/h.

MOTE, ONMOE ENTERED THLS
OO s SE7 70 oA HSE
AND /s oY FREEO LAE
AH s e upP (<L
WHESY fLL SWES TAPP D
o7, TAS Code /o Acso
Us€D Fok FREEAE &)
PIOAS [fDC SKACED £/74

SEE 1F oA /s Lemy
FRFE 0 CanN B
AAEED

*2 ST TN &
AN EES
Zd #IAEexs

IE7 UP AT
sorEes To
TArS Ao

4s¢, S [KEre
(ucs o
§Z%%é;s¢4
oot (WAS Ass/GOED &
7o YHUS ibrase merh YEs, Cnr ;Y"E’i
Aer XS APT Cullrnriy SuHP Su8s
N Hse So &o 7o
NEXT o4
i;;ﬁéfes Guprose #ou dovr
e £ ACED TVo SewAHr
A SiES a
< o sy
SUBFEe I :gjﬁ se7rar SuBs
oGRS A THS Code Cousd
oA oL B BE segfoicd A
susdm =150 | " s
. 4£bc Mo = MNK
‘TAIS 3 -
sy rihe' _PHEK ANL

1-48

Dispatcher

SO MRKE A ASS

 TREOUGH A SUBS

AOA SEE < JAE
Hot Qute rnss e
A Swn

2,
C-8:7 & s7AfT

SwWHAS

S€TS £-8Br7 om 24
SKHPED EAH A4S

s’ N
ANTEASS 7O

NO, SEE I1F XE ARy
SN, BOEELAY

1-49

1-50

Dispatcher

&GET N7
DOC DF
e 7/

omELD

g7 Sal
st 7 A20€

(SuBFL)

RIS ey AN

41/ SET M) ouwnTEeSs

(UL ONTE
A7 N

Se7s O- 8,7
O ALA~
A er s
S SEMEEED -
LSO SE7S &
B:7

BACK To #OM

UNINK o
e Lis)

LAk AN
ALLoe Kis7

SET M
. TD AP —>MIDT

o)

Ser uP

Mo
Aer N

<7ATUS =4

Fae D
Sub

PaRy W

VO =4

0L et/
oy,

Dispatcher

(Swény

&7
s

U

o

SUBSS IS ENTERED or)
AL FX/0 LpmeT70445
TIF VoL /s S8

SWAp ours Sov'é

NO, S€&~ 1 Resmerny s774L
755¢ pes

) TLIArA
o, Cay T QVERAY Qacu Aot
l S P
QLEAR
CEEsirs
W Mo ’K
AL SulS
UMINK ol
ArLoe Lrs7r
RIvK /A7
Flce L/87)
SE7 JA/S se7”
@ moros [ier
sl FEE
M=
M, L =

THIS 7H CS0UES IS LAl o A SEF woAs SwAAELET

AND AN /S AET fauscd By T lCompPleTiory SN IERHLT OF
AUSH ACORKrTS FREG NG TN SHOG SCAEDMLED oY,

Dispatcher

@ ST A oM

AT STATUS|
758 ser M7 =5
2
A , > L
75 Ao Ser JHrS
s e’
T T
Suts
TmP
272,
G 7B VEL AN
75 SOAED L,ST
e SeT Mat
MATAD Pouoyer S
FeR sufR
4&T AAd &7 AAd
o Qoo 18 L of FEEE
AT <sT
! gt
UMLK oM
/t’opﬂi
Auis7”
ST Ses8
PARTN MO, L = ¢
FEE
CLeak
- Do)
Bor 10 M7t

Di spatcher

EMPTAD

TAHE EnPTH0 Fry 1N E)5 THE Despn/Oners SAeeed
EPIR PRETITION SET e)2 foet TiE, KEN A SHACKE BN
EMA JPROEm 8 (g,;/gﬂ,;:) /S EVe oy ELELD EBETHN
MUST AOCK AT THE [ACGET DATH fACT7770." AArD
DECIDE AT TS Do . COLl7AN STATES FPE
HEFCRED 7o s THE Code™ MDD 490 72> Do ar A
JHE (-Be7 (Cxppon B ;—)/ 507 (Al HEA B 7)) AAD
PHETHEL THE TAGeT AT 7700) /S ERpry £ wvolT
THYIS 15 LD 7o A= THe CAME srA7E

STATE TARBLE
STATUS
0- Bi7| M-8 | emerd] ACT700 T TAAE

£ B B ARTN per o G MesE, por 4 HTREE | gD
/S EMPTY . So TAKE TN AND e 7

¢ £ | |7y cvrn, poy A oy ars A SESIOETT g
SO ATTEMPT TD SWAHL LES/IDENT

G 1 O | TRAE Mens mgxd CHEOK SHES FOC SHAASREKITY

£ 1] | TesssE s s gpos C=FB e o
SULT Y COCLLSED .

| & B o Mecd sy 47EmET HEE SwiAs . TAIS el
FREE wp D SHAE .

/B | aesody 15 o prrEES oF CLepens sos7
TS Ao, b5 T STHINS MUST = <L,
LEAVE THIS SITHNTIEN LA & 77 /L THAE
ORRE of /TBELF &HAEA) HRT STAZHS <<,

I 1 B | Twpessizis STATE Cpor AwoE C=/ €

JRT T 7

/L ATTERRTT 7D SwoAr sowd HD TR
AT L& SAEx/H HS5E

Dispatcher

FE 78
= 7/

T ol

™

FEM78 # Oof NBIES N 7ApeE |

L A
5 & S ared CSOTELES

£ SINT TRECE ZHDEX |
B OF ACI706 USELS
ALSERVED

A7
E7EG

ol A PLES aiced Foof Ag's TD
EXTEr St pr 7S TE ATk K LEAT s ot AT

(s AR pen T e THE DagA AT N

1-54

Dispatcher

EHOTN 15 THE Ol pr7eren S,

SET 4P A SHEHH SRETV
LazinéE

N, TRAT LOAS GUAL, sk
WAs O 177

GaT yps| [UOD Ll TDD &IOS

. NOEL TS THE EEMTR
ﬂ;,e; ad TAKE

Buss 1y
HEIA ADE
b 2>) ,
s SET ar M7
A FNTERS T AT
LK o 72 SHEMAR LAETN
U FEEFE
Lis7 TES

&S

Lermen
AT SIS = L
EB7T = 1
Ao
L2 AL = FEA1ID
E3E] #Ime sE7 /;///;l} Mons
AT STA7US = [/ D SHUE
L-817r =/ TS SETS , AC>
1> = gewsd BTN Aoy’
}/WWF(S Vaa S K SDE
O

UK

ARET N
[ron! FRES
K/ff ’ &/V 7
PUT IN BN
L1877 A7 ALL

SET MAT fo LS
o LT 7o Ar]

ST A Gnpens

[RES Mo, Go CHECK
SUE AT NS ol LA NEETY

1-55

Dispatcher

TS, Ao 15 Aaesy s LTm
SUBS Szl LA j NEXT
RN} Do A TA AL

HERE K A awLs

YES, ALl SuB LLEARED amP
AND MoH 15 Liady TH G.ue
Go so TAKE 17 MDD

use 17 [Fol sHEwS

A panr [T56
el oA ’?

NO AExtO AoAD
L FAEE OUER OOUY

Go To XoxO (pdE
T SWAR FWE
AFFEeTZD Sul ok
HCTHEL /TN

UNLINE RRTN o
| Do o ALLoe Lisr

ST Aon]

UL Hoel Feo~]
w SHenry Mo VL e

[fHREE L2 ST

1-56

Dispatcher

AT TS ST soE Admee THAT THE HAT STATHS =S THUS
ALL SuBS HIVE BESN ClACED ANS KEPPOED FEaP ALL Lis7S.

SUB SWAP OUTSE LERE DUL
7> TS Oobe B

Syes sonrfed oN Ton UNLIN &
oo ALF o f SoMESLL ﬁwh
g ke BunK
FAET'N Feors 7HE 7
Gy .
NO, Mo# /S
THE desite SN =T
PARTA ff?g
L= GeTss o
GeT 15T Agrw| , o
N MoTHEL

Cuney PUT Mot € suBsS
BACK /N FCFE y
<LIST7T r

73 A<L
SUBS
NTD
SHAEAK
AHODE

T

1-57

—
~
o
B
=
)
]
(%
+—— 4
ég
=
[N

This Chapter consists of three sections:

1. I/O Request Types - I/O Request types will present three types of I/0
requests and compare them.

2. I/0 Overview - I/0 Overview will present the information flow of an I/O
call at a high level.

3. I/0 Flow - I/0 Flow will present a more detailed flow example for each
type of I/0. The first request type will be presented in full. The
remaining two types will have their differences presented. Please note:
the flow charts presented cover the examples described, not the entire
I1/0 system.

2.1 I/0 REQUEST TYPES
There are three I/0 request types:

User (Normal Operation) provides a straightforward I/0 system call. A call
is made. The program is I/O suspended while the I/O operation is performed.
When the operation is completed the program is rescheduled.

User (Automatic Output Buffering) provides added features from the normal
operation call. After the call is made, the buffer is transferred to SAM
(System Available Memory). The program is rescheduled. The program does
not get stuck in I/O suspend until the buffer limits are exceeded.

System (XSIO) calls provide I/0 capability without all the overhead involved

in an EXEC call (error checking) for modules of the OP system that need to
perform I/0.

2-1

I/0 Requests

2.2 I/0 OVERVIEW
In brief, the flow of control from an EXEC I/0 call to the dispatcher is:

A. Process the interrupt. The EXEC call generates an MP violation. The
interrupt processor saves the state of the machine.

B. Validate the EXEC call. The system determines if it is a wvalid I/O
call, and establishes the type of call.

C. Validate and process the parameters. The call parameters are examined
for validity, reformatted and saved. The caller is I/0 suspended.

D. Set up for the driver. The various parameters are transferred to the
EQT and control passed to the driver.

E. The driver initiates the data transfer and returns to the system, with
information as to the result of the transfer (successful operation or
error type).

F. The system cleans up after the drivers.

G. Control passes to the dispatcher to dispatch the next program (or
redispatch the same program).

The driver handles the 1I/O. There are three returns from the driver
continuation section: Completion return, Continuation return and Get/Give-up
DCPC.

Completion Return. This return is taken when the driver has finished
handling the I/O request; i.e., successful completion or I/0 error.

Continuation Return. This return is taken when the driver has finished its
current operation, but the entire request has not been completed.

Get/Give-up DCPC Return. This return is taken +to get or to give up a
Dual-Channel Port Controller (DCPC) channel.

2-2

2.3 I/0 FLOW

To best describe

I/0 Requests

the flow of an I/0 operation, we will take the following

sample program through the operating system path to process the I/0:

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
RTN1 NOP
OUTPUT DEC
DISC DEC
BUFFER BSS
BUFFERLENGTH DEC
TRACK
SECTOR

The sample program is

EXEC

RTN1

OUTPUT

DISC

BUFFER
BUFFERLENGTH
TRACK

SECTOR

2
2
128
128

an unbuffered write to the disc.

for the operation are assumed as:

1. Track 100 is allocated to the calling program.

2. No other requests are in progress on the LU.

3. The disc driver is

DVM33, in select code 16B.

4. The system is not privileged.

5. The registers are:

O MNWP
nnonowonu
[

o

System conditions

The discussions that follows are referenced to Figures 2-1 through 2-8, flow
Steps in the flow are coded on the charts, and are

charts of the process.

used as reference points to the discussion.
to identify the location of the
They define the label around which you can find the the program code
a particular

contains labels
code.
that performs

operation or, in many

cases,

The heading for each discussion
procedure in the source

two labels that

2-3

I/0 Requests

identify the beginning and end of the program code segment. The module in
which the operation is performed is identified parenthetically as part of
the heading for the segment description. For example, the heading

B2. $RQST - INDR (EXEC6)

identifies that portion of a flow chart coded with B2; the lines of code
described in the discussion following are contained between labels $RQST and
INDR in module EXEC6.

2.3.1 Process the Interrupt
(Refer to Figure 2-1.)
Al. $CIC (RTIOQ)

Test to see if the interrupt system is on or off. This is done with the
SFS 0,C instruction. In either case, turn it off (the ,C does it). If it
is off, bump $INT by one. Do this to indicate to the parity error routine
(if it is a parity error interrupt) whether or not to reenable interrupts
before returning from the parity error routine.

A2. $CIC - $DVC (RTIOQ)

The status of the Dynamic Mapping System is saved in $DMS. See the MEM
status registers format in the HP 1000 Technical Reference Handbook (part

no. 5955-0282).
A3. $CIC - $DVC (RTIOQ)

The interrupting select code is obtained for select code 4 (LIA 4, see the
interrupt and I/0 control summary in the HP 1000 F-Series Computer Technical
Reference Handbook). The interrupting select code is saved in INTCD.

Ak, $CIC - $DVC (RTIOQ)
If this was a violation on select code 5, you do not need to clear the flag.

The flag will be used later. If the violation was not on SC 5, continue at
step A6 to clear the device flag. EXEC calls generate an interrupt on SC 5.

A5. (RTIOQ)

Was the violation a parity error? If so, go to $PERR6. If not, continue at
step A7. A parity error is indicated by bit 15 of the violation register
being set to 1.

NOTE: The memory protect board (on select code 5) should not have its flag

cleared. This would turn off the parity error interrupt capability
and clear bit 15 of the violation register.

2-4

Al

A2

A3

A4

AS

$CIC

I/0 Requests

A6

Test & disable
the interrupt
system

Clear the
interrupting
select code

Save MEM
status

A7 |Save the A, B, E & O
Registers. Memory
protect flag set to

MP is off.

Get the
interrupting
select code
and save it

A8

MP
DM or PE

Figure 2-1.

No

privileged
system
Q

Yes

A9

Disable DCPC
interrupts and
reenable the

interrupt system

Processing the Interrupt

A10

2-5

A10

I/0 Requests

Save the X and Y
registers and the
point of suspension

All

Al12

Al13

Al4

$RQST
MP Yes Bi
violation >~

$CLCK

$CIC4

No

A15

Al6

A17

A18

Schedule the
program

Uma

Issue message
‘SCO03 INT xxxxx

Um

Figure 2-1. Processing the Interrupt (Continued)

2-6

I/0 Requests

The memory protect card will turn off its own flag when the interrupt system

acknowledges the interrupt. There is a special flag that indicates a DMS

violation. This flag can be checked with an SFS or SFC instruction. See
the 12892A Memory Protect Theory of Operation in the HP 1000 Computers and
Engineering and Reference Documentation (Part II, Section IV, part
no. 92851-90001).

A6. $DVC (RTIOQ)

Build a CLF instruction to clear the flag on the interrupting device and
execute it.

A7. CIC1 (RTIOQ)

Save the A, B, E, and O-Registers in the users ID segment (words 9, 10, 11,
see the Program ID segment in the RTE-6/VM Programmers Reference Manual,
part no. 92084-90005). Set the memory protect flag to 1. MPTFL to indicate
that memory protect is now turned off.

AB. SW1 (RTIOQ)

Is this a privileged system? You can determine if it is privileged by
checking DUMMY in the SYSCOM area. If DUMMY is zero, the system is not
privileged. (Go to step Al0, otherwise step A9.)

A9. SW1 - CIC.O (RTCOM)

For a privileged system, you should set control on the privileged interrupt
card. (The flag is already set from the last time.) Note that the first
time through, the flag will not be set because there have not yet been any
calls to $IRT. This does not matter because the first time is during
loading of the second part of the operating system and at that time there
should not be any active privileged operations.

A10. CIC.O0 - $CJIMP (RTCOM)

Save the X- and Y-Registers in the first two words of the program start
page. Note that if the program starts in a page addressed as L42000B the
program will be reloaded starting at 42012B.
All. CIC.O0 - $CJIMP (RTIOQ)

Was this an MP violation? If so, go to RQST in EXEC6 to see if it is a
valid EXEC call or not. Otherwise go to step Al2.

2-7

I/0 Requests

2.3.2 Validate the EXEC Call
(Refer to Figure 2-2.)
Bl. $RQST (EXEC6)

Get the address of the violation (LIB 5) and save it as the point of
suspension in the user ID segment (word 8).

B2. $RQST - INDR (EXEC6)

Call $SNAP to count the number of interrupts on select code 5. MP, DM,
EXEC, XLUEX, LIBR, LIBX, and calls to the memory-resident library are all
counted.

B3. $RQST - INDR (EXEC6)

See if the call is a JSB EXEC. In this case it is, so go to RO in EXEC6
(step B50) to continue processing. Compare the violating instruction with a
JSB EXEC. If they match, it is an EXEC call.

B50. RO (EXEC6)

The entry identifier indicates the call is an EXEC call ($CALL is positive)
or an XLUEX call ($CALL is -1). In this case, it is an EXEC call.

B51. RO - R1 (EXEC6)

The actual number of parameters is checked to see if it is less than 1 or
greater than 8. The real # of parameters is the actual #+1. The extra
parameter is the request code, not needed for performing the actual I/0
transfer.

Return address - (address of JSB+l) -1 = Real # of parameters
B52. R1 (EXEC6)
Get the effective operand addresses. The addresses are stored in RQP1
through RQP9 in the system communication area on base page (1700B to 1710B).

Be aware that if the A- or B-Register is specified as an address, it will be
declared a request error.

B53. R101 - R3 (EXEC6)
See if the abort or no-suspend bits were set in the request code (bits 14

and 15). If they were not, continue at step B56. If they were, continue at
step BS4.

2-8

B1

B2

B3

B4

BS

$RQST

l

Save the address
of the violation

Count the numbers
of interrupts on

Select Code 5

Ng
Violation is a
JSB EXEC

No

WV

Violation is a
JSB XLUEX

No

4

Violation is a
JSB $LIBR

No

I/0 Requests

__Yff_._> B50

Yes

Yes

Figure 2-2.

Validating the EXEC Call

N

<

B6 Violation is a
JSB $LIBX

No

W
B7 Violation is a

$LIBX

N

V

No

B8 Violation is a

$LIBX

No

Yes

Yes s

Yes s

2-9

I/0 Requests

Save the entry
identifier

B50

B51 # of parameters_Ye_’>©
less than 1 or

greater than 8

lNo

B52 Get the effective
addresses of the
callers parameters

v
Abort or No— No
suspend bits set

BS53

Yes

B54 Update status word
in ID segment

Bump return

address to
successful return

B55

Figure 2-2.

2-10

B56

B57

B58

B59

B60

Request code L)Q
defined
J (RQERR)
Yes

Request code _No
defined

l Ye

Count the # of
this type of
EXEC call

RQERR

Any parameters Yes
cause a write
below the memory
protect fence

[=

Transfer to the
specified routine
to process the call

Validating the EXEC Call (Continued)

I/0 Requests

B56. R101 - R3 (EXEC6)

For the request code to be defined, it must not be less than 1 or greater
than the # of entries in the table (TBL).

B57. R101 - R3 (EXEC6)
Because some of the request codes between 1 and the end of the table may not
be legal, the address of the routine to process them is set to zero to

indicate that it is illegal. If the request is legal (in the example it
is), the address of the processing routine is saved in VECTR.

B58. R101 - R3 (EXEC6)

A call to $SNAP is made to count the number of this type of EXEC calls that
have occurred.

B59. R3 (EXEC6)

A check is made of any parameters that would cause the system to write into
a user buffer. The parameters are checked to be sure they do not point
below the memory protect fence.

To determine which parameters to check, a table (NAMTB) contains parameter
check bits, one for each possible parameter. If the bit is zero, the
parameter is checked. If the bit is a one, the parameter is not checked.
If any of the checked parameters fail to pass an RQO0 error is issued and we
go to $XEQ to prepare for the next user.

B60. R4 - ERQOO (EXEC6)

It is now time to transfer to the routine to handle the WRITE operation.
The transfer address may be found in VECTR. (Transfer to $IORQ in RTIOQ.)

2.3.3 Validate and Process the Parameters
(Refer to Figure 2-3.)
Cl. $IORQ (RTIOQ)

You must have at least one parameter (excluding the request code) and RQCNT
must not be zero.

C2. GTPAR (RTIOQ)

The call parameters, an eight-word array labeled PARM2 - PARM9, are moved to
a local buffer for ease of access.

2-11

I/0 Requests

$I0RQ

C1 Is there at least _No
one parameter

Yes

NA
c2 Move the actual
parameters into

a local buffer

l

c3 EXEC call _No
Yes

Figure 2-3. Validating and Processing the Parameters

2-12

I1/0 Requests

C20 Save LU 1
\: Yes
Cc21 LU —»0'———7;;;;9
No
c22 In session —° _____, €23 Switch the LU
if possible
No
:’ No
v No C25 LU defined for
Yes
Yes
N
C26 Switch the LU
if possible
2 Y
c27 Lu=0_-—=12_
Imm comp
No

WV Y
c28 LU = 255 —ﬂ—>
l No

Figure 2-3. Validating and Processing the Parameters (Continued)

2-13

Figure 2-3.

I/0 Requests

Cc29

c29 LU > max LU Yes yERRO2

No

C30 Get the EQT #

31 EQT = 0 Yes |
Imm comp

No

v

C32 Determine the EQT
address and set the
base page pointers

EQT1 - EQT15

C33 1/0 select code = 0 °° @
No

hd

L.000

Validating and Processing the Parameters (Continued)

L.000
v Yes
C40 Status request
No
W Y
C41 LU or EQT down —%2
No
. \
C42 = Control request
No
C43 More than 322
parameters
Yes
C44 | Buffer in users 2 JERR04
address space
Yes
1 No
C45 Any EQTs locked
Yes
Figure 2-3.

I/0 Requests

Lo v

C46 LU =0

No

v No

C47 LU locked

Yes

WV

C48 Locked to callerL

No

W
C49 Have correct RN Y*®_,(cg0

No

A4
C50 No-suspend Yes

bit set
No

W

C51 Suspend until
LU unlocked

$XEQ

—

C52 Return error
1013 to caller

$XEQ

Validating and Processing the Parameters (Continued)

2-15

I/0 Requests

&

cé66

)
Is program-ﬂ’—
Extended
background
and buffer
below common

Yes

¥
Move to buffer

b

C67 Go 1/0 suspend

ces

the program

Go link the
request into
the list
(on the EQT)

C60 Is this a control ——>
request
No
cé1l Is this driver No @
a disc
Yes
LY No [ERRO2
ce2 Valid disc access ——~ 3 ERRO1
ERRO05
Yes
A4 Yes
C83 Control request ———
No
. A Yes
c64 Is this a call from ——
a reentrant routine
J No
cés Setup parameters
in ID Segment
I
Figure 2-3. Validating and Processing the Parameters (Continued)

2-16

I/0 Requests

C80 Buffered C86 Move the request
parameters, program

Yes priority and user
N v buffer into a
(of .31 Priority < 41 es temporary block
No

N (g
c82 Buffer limits Y% c87 Control request—_Ye3
exceeded N
o

J C88 Move t1_1e users
Cc83 Allocate SAM buffer into SAM

C84 Never enoughE’—sé @
memory {
N Cc89 Put word 3
° parameter (optional
J Yes parameter) in place
C85 No memory now—> of user buffer length

No l
c86

Figure 2-3. Validating and Processing the Parameters (Continued)

2-17

I/0 Requests

C3. GTPAR - OLD (RTIOQ)

See if this is an EXEC call or an XLUEX call. $CALL is negative for a XLUEX
call and positive for an EXEC call.

C20. OLD (RTIOQ)
Save the LU 1 (session stores LU 1 in the SST) in REQLU for later use.
C21. OLD - NSESS (RTIOQ)

Is it =zero? If it is (in the example it is not), perform an immediate
completion.

C22. OLD - NSESS (RTIOQ)

Is the calling program in session? Check the session word in the ID segment
(SCB or word 32). If positive and non-zero the program is in session.

C23. OLD - NSESS (RTIOQ)

Call $SWCK (RTIOQ) to convert the session LU to the system LU. The SST is
searched by $SWCK.

C25. OLD - NSESS (RTIOQ)

If the session LU is not defined for this user (not in SST), go to ERR12
(RTIOQ) to issue an 1012 error.

C27. L.0.1 - L.000 (RTIOQ)
If the LU is 0, go to L.00x for an immediate completion.
C28. L.0.1 - L.000 (RTIOQ)

See if the LU number is 255. If it is, issue an I026 error (I/O request
made to a spool that has been terminated by the GASP MS command).

€29. L.0.1 - L.000 (RTIOQ)

Is the specified LU greater than the maximum LU? The maximum LU number may
be found in the system communications area (1653B). If it is, go to ERRO2
to issue an IO02 error.

C30. L.0.1 - L.000 (RTIOQ)
Get the EQT number by adding the starting address of the Device Reference
Table (DRT) to LU-1. The lower 8 bits of this entry contain the EQT number.

(See the DRT in the RTE-6/VM Programmers Reference Manual, part
no. 9208L4-90005.)

2-18

I/0 Requests

C31. L.0.1 - L.000 (RTIOQ)

Go to L.0Ox for an immediate completion if the EQT number is O. In the
example it is not.

C32. L.0.1 - L.000 (RTIOQ)

Call $CVEQ in RTCOM to convert the EQT number to an address and then set the
Base Page pointers (EQT1 - EQT15) to point to the EQT. If the first pointer
is already set up, it is assumed the others are also.

C33. L.0.1 - L.000 (RTIOQ)

If the select code specified by the EQT is zero, go to ERRO3 and issue an
1001 error (illegal EQT referenced by LU in I/0 call).

cL40. L.000 (RTIOQ)

Determine if this is a status request (EXEC 13). Get the request type from
RQP1 and check the low four bits. In the example, it is not (save it in
RQPX for later).

Chl. L.000 - L.01 (RTIOQ)
Determine if the LU or EQT is down (call $STDV in RTIOQ). To see if the EQT
is down check ©bit 14 and 15 of word 3 (14 should be set and 15 should be

clear). To see if the LU is down, check bit 15, word 2 of the DRT (The bit
is set if the LU is down).

C42. L.000 - L.01 (RTIOQ)
If this is a control request, go to L.01 to handle it. In the example, it
is not. A control request 1is a type 3 request, the example is a type 2
request. '

C43. L.000 - L.01 (RTIOQ)

A check 1is made for at least three parameters. You must have at least

three: LU, buffered address, and buffer length). Any thing less and you
cannot perform a READ or WRITE (in our case a WRITE).

2-19

I/0 Requests

Chl. L.000 - L.01 (RTIOQ)

A call is made to $BFCK in RTIOQ to see if the buffer is legal. To be a
legal buffer it must not go past the end of the 32k address space (error).
If the buffer is in common, then the whole buffer must be in common. If the
buffer is not in common, the last page used by the buffer is checked for

write protection. If the page is write protected, it means the memory is
not available to the program. Go to ERRO4 to issue an error message.

CL45. L.01 (RTIOQ)

A check is made of the EQT locking table to see if there are any entries.
In the example there are none, so we continue.

CU6. L.019 - L.01A (RTIOQ)

Another check for LU 0. If it is LU O, skip the LU-locked check. In the
example, it is not LU O.

C47. L.019 - L.01A (RTIOQ)

Determine if the LU is locked. To do this, pick up the lock byte of the LU
in the third part of the DRT. If zero, the LU is not locked (as in the
example).

C60. L.01A (RTIOQ)

If this is a control request, there is no need for further analysis of the
call; go to the auto buffering check.

C6l. L.01A - L.01B (RTIOQ)
If this is a disc driver, there is additional checking to be performed. Get
EQT word 5 and mask it with a 36000B, then compare it to 1L000B. If it
matches, it is a disc (30, 31, 32, 33).
C62. L.01A - L.010
For a valid disc access, you must meet the following requirements:

1. If a class request - ERRO2.

2. If less than five parameters - ERROL.

3. If LU 2 or 3:

a. If starting sector less than 0 or greater than the track size -
ERROS.

b. Last track of user request >last track on LU - ERROS.

2-20

I/0 Requests

c. Input? User can access any track, so skip further tests (go to
L.10).

d. Caller has legal access - owns the track (allocated to caller).
Global access allowed

C63. L.10 (RTIOQ)

See if this is a control request. (Request code is three for a control
request.) In the example, the request code is two - a write request.

C6L. L.10 - L.102 (RTIOQ)

Check the RENT bit in the ID segment (word 20, bit 10) to see if the caller
is re-entrant. (The example is not re-entrant.)

C65.

There are five temporary words in the ID segment. The call parameters are
stored in the ID segment after they have been processed by the system.
Label them XTEMP, XTEMP+1, XTEMP+2, XTEMP+3, XTEMP+l4 (words 1-5).

The control word is built as follows:

XTEMP === === === oo mm oo oo +
| T * Si* X ¥ S5*% S FUN * SUB CHAN * REQUEST CODE |
| 15/14%13 *12 *11 * 10----6* 5------ 2% 1/0 |

XTEMP+1 Contains the buffer address of buffer 1 for a read or write
operation or the optional parameter for a control operation
(contains the parameter, not the address of the parameter).

XTEMP+2 Contains the buffer length of buffer 1.
XTEMP+3 Optional parameter 1 or buffer address if double-buffered call.

XTEMP+Y4 Optional parameter 2 or the buffer length of buffer 2.

If some of the parameters are not specified (i.e., the optional parameters),
their contents are undefined.

C66. L.101 - L.13 (RTIOQ)
Call $EXB6 in RTEMA to process type 6 programs. If type 6 and the buffer is
below the start of common (in Table Area I or in the driver partition) remap

the buffer after common and update the buffer address in the user 1ID
segment.

2-21

I/0 Requests

C67. L.101 - L.13 (RTIOQ)

Call $LIST to have the program I/O suspended.

C68. L.13 - L.135 (RTIOQ)

The request is linked with any existing requests. If priority is 0-L0, it
is linked by its priority and in a FIFO list. If the priority is 41-32767,

it is appended to the end of the 1list. In the example, the ID segment is
now linked off at EQT word 1.

2.3.4 Buffered I/0

(Refer to Figure 2-3.)

Cc80. L.027 - L.028 (RTIOQ)

For the request to be buffered it must not be an input and the EQT word L
bit 14 (buffered bit) must be set. Further, the UB bit (Bit 14) in the
control word must not be set and it must not be a dynamic status request.

¢81. L.03 - L.031 (RTIOQ)

If the program's priority is less than 41, do not perform the buffer check.

¢82. L.03 - L.031 (RTIOQ)

If the buffer limits were exceeded, check to see if the user should be
suspended.

Cc83. L.031 (RTIOQ)

Call $ALC (in $ALC) to allocate SAM to buffer the users data.

Cc84. L.O4 - L.ohko (RTIOQ)

If there will never be enough memory to buffer the users data, go to L.10

(C63) and proceed as an unbuffered call.

c85. L.0L4 - L.040 (RTIOQ)

If there is not enough memory now, suspend the user in a memory wait.

2-22

I/0 Requests

C86. L.06 - L.08

Now is the time to build the control information in the block of SAM and
move the user’s data there.

The format of buffered request in SAM is:

WORD CONTENTS
1 < LINKAGE WORD >
2 <T, CONTROL INFO, CODE >
3 <PRIORITY OF REQUESTOR > =0 IF SYSTEM
4 <TOTAL BLOCK LENGTH WORDS>
5 <USER BUFFER LENGTH >
6 <TRACK OPTION WORD >
7 <SECTOR OPTION WORD >
8 <WORD 1 OF USER BUFFER >

.

v

N+7 <WORD N OF USER BUFFER

C87. L.061 (RTIOQ)
If this is a control request put the optional buffer in place of the
user buffer length. In our case it is not.

C88. L.065 (RTIOQ)

Move the users data to the SAM buffer.

2.3.5 Set Up for Driver

(Refer to Figure 2-4.)

D1. $DRVR (RTCOM)

Check the availability bits (bits 14, 15 of EQT 5) to see if the driver is
waiting for DCPC. If it is, go to D16 to handle it. If its not (as in the
example), continue.
D2. $DRVR - $DVRO (RTCOM)
Check the availability bits to see if the device is down (bit 14 set) or
busy (bit 15 set) If either case is true, go to the dispatcher ($XEQ) and

dispatch the next program. In the example neither is true, go we continue
on.

2-23

D1

D2

D3

D4

D5

. ‘o es
Device waiting —>

for DCPC

lNO

I/0 Requests

D6

$XEQ

Yes

Device down

or busy

No

4

\
Device needs

DCPC

No

Setup map

—_—

DCPC ;'/equest—yﬁe
from continuation

section of the

2-24

driver
No

Figure 2-4.

) o

&

D7 Is request class
I/0 or buffered

Driver Setup

(o)

the request

jNo

D9 Setup EQT7 with
the buffer address
or the control

request

D

Setup EQT6 with

—

Remove sign bit
from the EQT7
parameter if
this is not a
control request

D10

D11

D12

D13

I/0 Requests

Setup EQT8 with D14 Get the device
the buffer length select code
‘[from EQT4
Setup EQT9 and l
EQT10 with the D15 Transfer to
optional parameters the driver

|

Set the device
timeout clock
if not currently
running

Zero out the
timeout bit
and set the
subchannel #
in EQT4

!

Figure 2-4.

Driver Setup (Continued)

2-25

I/0 Requests

D16 DCPC available — °
l Yes J, .
D18 Setup to wait
for available
D17 Allocate DCPC DCPC if
clear AV bits necessary

l

D19 Get the buffer
address

Figure 2-4. Driver Setup (Continued)

2-26

I/0 Requests

D3. $DRVR - $DVRO (RTCOM)

Check the D bit (bit 15) in EQT 4 to see if this driver needs DCPC. In the
example it does.

D16. $DVRO (RTCOM)

The DCPC availability flag DMACF is checked to see if anyone is waiting for
DCPC. If someone is waiting (DCACF <> 0), stack the request. In the
example, a channel is available.

D17. DVROO (RTCOM)

Check the interrupt table entries for select codes 6 and 7. If an entry is
0, the channel may be allocated. Set the system com area (CHAN (word 1673))
to the channel being allocated.

Set the EQT 1 address in the interrupt table. If the driver was waiting for
DCPC (EQT 5 AV field bits 14 and 15 set), clear the bits and subtract 1 from
the "Waiting for DCPC" flag (DMACF).

Call DRVMP (in RTCOM) to set up the map for the driver, then copy the map to
the DCPC port.

D5. DvV02C (RTCOM)

Check to see if the DCPC request was made from the continuation section of
the driver (bit 15 set in EQT 3). If it was, the EQT is already set up. In
the example, DCPC is being assigned for the initiation call.

D6. DV02C - DRV2 (RTCOM)

EQT word 6 is built and installed. The control word is built from the first
temporary word in the ID segment.

DT. DRV2 (RTCOM)

Check the request type (bit 14 of EQT 6). If it is set, this is either a
Class I/0 request or a buffered request. If it is clear (as in the
example), it is a standard call or a system call.

D8. DRV2 - DRV3 (RTCOM)

Remove the sign bit from the buffer address to be sure it is not treated as
an indirect address.

D9. DRV3 (RTCOM)
The buffer address is placed in EQT 7. See the Equipment Table Entry Format

in the RTE-6/VM Programmers Reference Manual. This is obtained from the
second temporary word in the ID segment.

2-27

I/0 Requests

D10. DRV3 - DRVL4 (RTCOM)

Set the buffer length in EQT 8. This is from temporary word 3 of +the ID
segment.

D11. DRV3 - DRVY4 (RTCOM)
Fill EQT words 9 and 10 with information from ID segment temporary words U
and 5. All five ID segment words are transferred to the EQT even if there
is no valid data in them.

D12. DRV3 - DRV4 (RTCOM)

The device timeout clock is set if it is not now in operation (non-zero).
To set it, EQT word 14 is copied to EQT word 15.

D13. DRV3 - DRVL (RTCOM)

Clear the timeout bit (device has not timed out) and place the subchannel
number (lower 5 bits) in EQT L.

D1L. DRVY4 (RTCOM)

The select code to be used by the device is obtained from bits 0-5 of EQT 4
and placed in the A-Register.

D15. DRVL4 - INUS (RTCOM)

Transfer control +to the driver in the user map. Transfer control to the
initiation address contained in EQT word L.

2-28

I/0 Requests

2.3.6 EQT Words Set Up by RTE-6/VM

The following words are set up by the operating system before calling the
driver:

WORD CONTENTS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I/0 REQUEST LIST POINTER

e e = __ 4 = 4
]

!

|

2 R | DRIVER INITIATION SECTION ADDRESS E

3 -R H DRIVER INITIATION SECTION ADDRESS }

y —D { B P{ S| T} SUBCH # (LOW 5 BITS)| I/O SELECT CODE }

5 '— AV EQUIP TYPE CODE i STATUS }

6 }- CONWD (CURRENT I/O REQUEST WORD) }

7 E—REQ. BUFFER ADDR. OR CONT. REQ. OPTIONAL PARAM (IBUF) }
'

8 }- REQUEST BUFFER LENGTH (IBUFL) }

9 }- TEMPORARY STORAGE FOR OPTIONAL PARAM (JBUF) E

- |

10 } TEMPORARY STORAGE FOR OPTIONAL PARAM (JBUFL) 3

11 }_--— TEMPORARY STORAGE FOR DRIVER }

12 }- TEMPORARY STORAGE FOR DRIVER (EQT EXT SIZE) E

13 E— TEMPORARY STORAGE FOR DRIVER (EQT EXT START ADDR) E

) '

14 }— DEVICE TIMEOUT RESET VALUE }

15 E- DEVICE TIMEOUT CLOCK E

+

2-29

I/0 Requests

Bits 0 and 1 of CONWD, EQT word 6, specify the kind of call:

01 = Read
10 = Write
11 = Control

Bit 2 is the most significant bit of the subchannel number contained
in bits 2 through 5.

Bits 6 through 10 contain the function code.

Bits 14 and 15 specify the call type:

00 = Standard
01 = Buffered
11 = Class

Note that the EQT pointers on the base page are set up to point to the
program EQT and the A-Register contains the select code in bits 0-5.

2.3.7 Driver Rules for Initiation Return

Upon return from the driver initiation section, the status of the operation
is returned in the A-Register:

Operation initiated; can dispatch next program.

Read or write illegal; program aborted (IOO0T)

Control request illegal; program aborted (IOO0T7)
Equipment not ready or program I/0 suspended (IONR)
Immediate completion; dispatch next program.

DCPC channel required; go to initiation section again.
DCPC channel assigned, driver is returning it;

DCPC treated as O.

Program making I/0O request is aborted; I/0 error number
and message are displayed on console:

AVl WMo
L L | | A | [

7-99

T-59 - HP Reserved
60-99 - User drivers

2-30

I/0 Requests

2.3.8 Clearing After the Device

(Refer to Figure 2-5.)

F1. DRVRT (RTCOM)

If the user map was changed, restore it. The flag DVMPS will be zero if the

map was not changed. It must be reset if you were remapped (EB with buffer
below common) or you are not the currently executing program.

F2. DRVRT (RTCOM)

In the example, we have a successful initiation. Continue at step F5.
F5. DRVOO (RTCOM)

Set the device busy by setting bit 15 of EQT 5 (the AV bits). Do not set
the busy bit if no other requests are queued up.

F6. Exit from $DRVR back to RTTOQ.

2.3.9 Processing Interrupts

(Refer to Figure 2-6)

H1. $CIC (RTIOQ)

Test to see if the interrupt system is on or off. This is done with the
SFS 0,C instruction. In either case, turn it off (the ,C does it). If it
is off, bump $INT by one. Do this to indicate to the parity error routine

(if it is a parity error interrupt) whether or not to reenable interrupts
before returning from the parity error routine.

H2. $CIC - $DVC (RTIOQ)

The status of the Dynamic Mapping System is saved in $DMS. See the MEM
status registers format in the HP 1000 Technical Reference Handbook (part
no. 5955-0282).

H3. $CIC - $DVC (RTIOQ)

The interrupting select code is obtained for select code 4 (LIA 4, see the

interrupt and I/O control summary in the HP 1000 F-Series Computer Technical
Reference Handbook. The interrupting select code is saved in INTCD.

2-31

F1

F2

F3

F4

F5

F6

I/0 Requests

Restore the user
map if necessary

l . Yes
Operation —— ::)
successfully
initiated
No
Give up DCPC?-N—°~>

Yes

Return DCPC

&—

Set device busy

Figure 2-5.

2-32

()

F7 Deallocate DCPC

v Yes
F8 Requesting DCPC —>

No
v Yes
F9 EMAIO ——
No
F10 $XS10—==
No
v Yes
F11 NR error
No

Clearing After the Driver

H1

H2

H3

H4

HS

(s

Test & disable
the interrupt
system

Save MEM
status

Get the
interrupting
select code

and save it

MP
DM or PE

Figure 2-6.

I/0 Requests

H6

Clear the
interrupting
select code

H7

No

H9

Save the A, B, E & O
Registers. Memory
protect flag set to

MP is off.

Disable DCPC
interrupts and
reenable the
interrupt system

Processing the Interrupt

2-33

I/0 Requests

Save the X and Y
registers and the
point of suspension

H10

$RQST
H11 MP Yes
violation @
$CLCK
Hi2 TBG
interrupt
H13
Hi4

H15

H16

H17

H18

interrupt

No

program
dormant

Schedule the
program

U #EQ

Issue message
‘SC03 INT xxxxX

[:j XIRT

Figure 2-6. Processing the Interrupt (Continued)

2-34

I/0 Requests

H4. $CIC - $DVC (RTIOQ)

If this was a violation on select code 5 you do not need to clear the flag.
The flag will be used later. If the violation was not on SC 5, continue at
step H6 to clear the device flag. EXEC calls generate an interrupt on SC 5.

H5. (RTIOQ)

Was the violation a parity error? If so, go to $PERR6. If not, continue at
step HT. A parity error is indicated by bit 15 of the violation register
set to 1.

The memory protect board (on SC 5) should not have its flag cleared because
this would turn off the parity error interrupt capability and clear bit 15
of the violation register.

The memory protect card will turn off its own flag when the interrupt system
acknowledges the interrupt. There is a special flag that indicates a DMS
violation. This flag can be checked with an SFS or SFC instruction. See
the 12892A Memory Protect Theory of Operation in the HP 1000 Computers and
Engineering and Reference Documentation (Part II, Section IV, part
no. 92851-90001).

H6. $DVC (RTIOQ)

Build a CLF instruction to clear the flag on the interrupting device and
execute it.

H7. CIC1 (RTIOQ)

Save the A, B, E, and O-Registers in the user ID segment, words 9, 10, and
11. (See the Program ID segment in the RTE-6/VM Programmers Reference
Manual, part no. 92084-90005). Set the memory protect flag to 1. MPTFL to
indicate that memory protect is now turned off.

H8. SW1 (RTIOQ)

Is this a privileged system? You can determine if it 1is privileged or not
by checking DUMMY in the SYSCOM area. If it is zero it is not privileged.
(Go to step H10, otherwise step H9.)

H9. SW1l - CIC.O (RTCOM)

For a privileged system you should set control on the privileged interrupt
card. (The flag is already set from the last time.) The first time
through, the flag will not be set because there have not yet been any calls
to $IRT. This does not matter because the first time through is during
loading of part two of the operating system, and at that time there should
not be any active privileged operations.

2-35

I/0 Requests

H10. CIC.O - $CJMP (RTCOM)

Save the X- and Y-Registers in the first two words of the page the program
starts on. Remember, if the program starts in a page addressed as L42000B
the program will be reloaded starting at 42012B.

H11. CIC.O - $CJIMP (RTIOQ)

Was this an MP violation? If so, go to RQST in EXEC6 to see if it is a
valid EXEC call. Otherwise go to step Hl2.

Test to see if the interrupt system is on or off. In either case, turn it
off. If it is off, bump $INT by one. Do this to indicate to the parity
error routine (if it is a parity error interrupt - for this example it is
not) whether or not to re-enable interrupts before returning from the parity
error routine.

H12. CIC.0 - $CJIJMP (RTIOQ)

Compare the interrupting select code with that in the system communication
variable TBG. If it matches, this is a TBG interrupt.

H13. $CJIJMP - $SKED (RTIOQ)

Be sure the interrupting select code is contained within the interrupt
table.

H1k. $CIJMP - $SKED (RTIOQ)

An undefined entry would be a zero. In our example it 1is not zero, so
continue.

H15. $CIJMP - $SKED (RTIOQ)

If the interrupt table entry is positive, it is an EQT entry. Go to $CIC2
to process it.

2.3.10 Set Up for Drivers

The EQT pointers need be set up only if the first one is not setup. Ensure
that the correct map is set wup, then call $SNAP to count the number of
interrupts on this select code. Set the timeout only if a device timeout
value is established. Now get the driver continuation section address from
word 3 of the EQT.

2-36

I/0 Requests

2.3.11 Completion Return
(Refer to Figure 2-7.)
The following completion status is returned from the driver to the

A-Register, and the associated error messages are delivered to the system
console:

0 = Successful completion
1 = Device not ready (IONR)
2 = Unexpected end of transmission (IOET)
3 = Transmission parity error (IOPE)
4 = Device timeout (IOTO)
The B-Register will contain the amount of data transferred. If any errors

occurred, additional status information will be found in bits 0-7 of EQT
word 5.

K1. $CON1-$L.49 (RTCOM)

Call $RSM to restore the user map in case it was modified by an EXEC call
from a type 6 program or it is not the current program in the user map.

K2. $CON1 - $L.L49 (RTCOM)

If the DMA bit is set in EQTY4 (Bit 15) or the driver returned with bit 15 of
the A-Register set, release DCPC (call $CDMA). To release DCPC you clear
the EQT ENTRY and do a CLC and STF on the DCPC channel.

K3. $L.L49 (RTCOM)

If the I/0 request list has no requests on it, then this is treated as an
illegal interrupt.

K4. L.4B - L.50 (RTCOM)

If bit 15 of the I/0 request (the T field) is set, then this is either a
system request or a class I/0 request. If it is, take care of it.

K5. L.49B - L.50 (RTCOM)

If this is a user normal request (the T field is 00) go take care of it. 1In
the example program, it is.

K6. L.51 - L.51B (RTCOM)
If the request just completed was an input from an interactive device type O

or type 5 or T subchannel 0, go to step KT to schedule the program, else
step K8.

2-37

K1

K2

K3

K4

K5

I/0 Requests

$CON1 @

l

N
Restore the user K6 Interactive —
map is necessary input request
Yes
Return DCPC K7 Schedule program
if necessary at the head of the
priority queue
Ilegal interruptY®S{$cIca '
No v
K8 Schedule program
d at the tail of the
System request Y& priority queue
or class I/0
No d
K9 Any I/0 Yes
J No y I/0 errors —=—
User normal ——
request No
J Yes K10 Device down _Yes |
K11

Figure 2-7. Completion Return

I/0 Requests

D

!

K11 Set the devices K16 Any drivers Y¢S,
available and waiting on
clear word two DCPC
of the driver<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>